The strong force

The strong force out-competes the electromagnetic force on short distances to hold protons together in atomic nuclei. Nuclear matter can be studied in particle colliders and astrophysical objects like neutron stars. The quantum effects of particles that feel the strong force are important for many measurements in particle physics, including the recently measured anomalous magnetic moment of the muon. Many theoretical predictions of the effects of the strong force rely on the numerically-intensive work that requires supercomputers.



News about Strong Force


First flight of HELIX

2024-07-10

The High Energy Light Isotope eXperiment is designed to measure various isotopes of cosmic ray nuclei, which are sensitive to the history of propagation of these energetic particles through our Milky Way galaxy, and which are linked to energetic interactions in the interstellar medium (yielding antimatter as well as rare nuclei). The instrument had its first stratospheric balloon flight on May 28, 2024 from the Esrange rocket/balloon base in northern Sweden, landing on Ellesmere Island in the Canadian high Arctic after more than 6 days. The Penn State group includes IGC faculty Stephane Coutu and Isaac Mognet, and past and present students Heather Allen, Carl Chen, Alex Pazoki and Monong Yu.




About our wordmark
Monica The IGC wordmark was created by Monica Rincon Ramirez, while she was a graduate student at the Institute for Gravitation and the Cosmos (IGC). Monica enjoys drawing new connections between fundamental theory and observations. Her graduate work includes specialized topics in general relativity, loop quantum gravity, and quantum fields in cosmological backgrounds. In particular, her thesis work focused on finding effective quantum corrections to gravitational phenomena from spinfoams, and applications to cosmology. She received her PhD in 2024.

The wordmark symbolizes the scope and variety of research at the IGC. The base of the image represents quantum gravity, evoking the quantum geometrical picture from spinfoams and loop quantum gravity. These are among the approaches to fundamental questions studied at the Center for Fundamental Theory. The middle of the image represents the Center for Theoretical and Observational Cosmology by galaxies embedded in a smooth surface, characteristic of spacetime in general relativity and the much larger physical scales studied in cosmology. Finally, at the top, the surface curves to an extreme, representing a supermassive black hole accompanied by an energetic jet. These elements depict an active galactic nucleus, inspired by Centaurus A. Just to the right, a pair of black holes approaches merger. This top portion of the wordmark represents the Center for Multimessenger Astrophysics, which specializes in the study of high-energy phenomena in the universe.