Project 8 Experiment

The goal of Project 8 is to measure the mass of the neutrino, which is a fundamental particle (that is, a basic building block of the universe). Neutrinos are incredibly abundant - for every atom in the universe, there are about a billion neutrinos. However, our experience with them is minimal because they barely interact with ordinary matter. In fact, trillions of neutrinos produced by nuclear processes in the sun pass through your body every second, like tiny ghosts. Instead of trying to capture the neutrino itself, we look at the decay of tritium, which is an isotope of hydrogen. Tritium undergoes beta decay, emitting an electron and a neutrino which have to share the energy released in the decay. Using a new method based radio-frequency detection, we measure the energy of the electron very precisely. Whatever is "missing" must belong to the neutrino. For the highest electron energies, the missing energy amounts to the neutrino's mass. [Text and image from https://www.project8.org/]



Collaboration home page



IGC members in Project 8



About our wordmark
Monica The IGC wordmark was created by Monica Rincon Ramirez, while she was a graduate student at the Institute for Gravitation and the Cosmos (IGC). Monica enjoys drawing new connections between fundamental theory and observations. Her graduate work includes specialized topics in general relativity, loop quantum gravity, and quantum fields in cosmological backgrounds. In particular, her thesis work focused on finding effective quantum corrections to gravitational phenomena from spinfoams, and applications to cosmology. She received her PhD in 2024.

The wordmark symbolizes the scope and variety of research at the IGC. The base of the image represents quantum gravity, evoking the quantum geometrical picture from spinfoams and loop quantum gravity. These are among the approaches to fundamental questions studied at the Center for Fundamental Theory. The middle of the image represents the Center for Theoretical and Observational Cosmology by galaxies embedded in a smooth surface, characteristic of spacetime in general relativity and the much larger physical scales studied in cosmology. Finally, at the top, the surface curves to an extreme, representing a supermassive black hole accompanied by an energetic jet. These elements depict an active galactic nucleus, inspired by Centaurus A. Just to the right, a pair of black holes approaches merger. This top portion of the wordmark represents the Center for Multimessenger Astrophysics, which specializes in the study of high-energy phenomena in the universe.