The role of cosmological constant in LQC

LOOP QUANTUM COSMOLOGY WORKSHOP IGC, 23-25.10.2008

Tomasz Pawlowski [IEM (CSIC), Madrid, Spain]

work by:

A. Ashtekar, TP

W. Kaminski, J. Lewandowski, TP

E. Bentivegna, TP

Purpose of the talk

- LQC: an application of Loop Quantum Gravity methods to symmetry reduced (minisuperspace) models.
- Solution Section 12 Isotropic flat universe with massless scalar field in LQC: Results for $\Lambda = 0$ (A Ashtekar, P Singh, TP gr-qc/0607039): change of dynamics due to quantum geometric effects.
 - Existence of large semiclassical (contracting) universe preceding expanding one.
 - Bounce at energy density $\rho = \rho_c \approx 0.82 \rho_{\text{Pl}}$.
- Presented work: Inclusion of the cosmological constant (preliminary studies in gr-qc/0607039).
 - Questions:
 - Are the qualtitative properties similar ?
 - Is bounce still characterized by ρ_c ?
 - What new properties the models with Λ possess ?
 - Due to distinct mathematical properties of an evolution operator +ve and -ve Λ have to be investigated separately.

LQC quantization scheme

Considered model: flat isotropic (FRW) universe Matter content: massless scalar field

Basic variables:

geometry: A_a^i , E_i^a in isotropic situation reexpressed in terms of coefficients c, p.

(Gauss and Diffeomprophism constraints automatically satisfied.) matter: field ϕ and conjugate momentum p_{ϕ} .

Quantization method following LQG:

- Geometric DOF: triads p and holonomies h raised to operators.
 Matter DOF: standard (Schrodinger) quantization.
- Kinematical Hilbert space: $\mathcal{H}_{kin} = \mathcal{H}_g \otimes \mathcal{H}_{\phi} =: L^2(\bar{\mathbb{R}}_{Bohr}, d\mu_{Bohr}) \otimes L^2(\mathbb{R}, d\phi)$
- Basis of \mathcal{H}_g : eigenstates of \hat{p} for convenience labeled by v s.t. $\hat{p} |v\rangle = 2 \cdot 3^{\frac{1}{6}} \pi \gamma \operatorname{sgn}(v) |v|^{\frac{2}{3}} |v\rangle$
- Quantization of Hamiltonian constraint $C_{\text{grav}} + C_{\text{matt}} = 0$: Its geometric components reexpressed in terms of holonomies (Thiemann method), next raised to operators.

Evolution operator

Quantum constraint similar to Klein-Gordon equation:

 $\partial_\phi^2 \Psi(v,\phi) = -\Theta \Psi(v,\phi)$

- Θ is a difference operator $\Theta \Psi(v,\phi) = C^+(v)\Psi(v+4,\phi) + C^o(v)\Psi(v,\phi) + C^-(v)\Psi(v-4,\phi),$
- Λ enters C^o only, approximately acts like v^2 potential,
- Θ is symmetric on the domain \mathcal{D} of finite combinations of $|v\rangle$.
- System reinterpreted as free one evolving with respect to ϕ .
- Few important details:
 - No *C*-symmetry violation interactions \Rightarrow states symmetric with respect to reflection Π in v.
 - Superselection: Domain of v naturally splits onto family of sets preserved by action of Θ and Π :

 $\mathcal{L}_{\epsilon} := \{ v \in \mathbb{R} : v = \pm \epsilon + 4n, n \in \mathbb{Z} \}.$

In consequence $\mathcal{H}_g = \oplus \mathcal{H}_{\epsilon}$, where \mathcal{H}_{ϵ} contains functions supported on \mathcal{L}_{ϵ} only.

Observables

Left-hand side negatively definite, thus we take only positive part of
 Two sectors: positive and negative frequency. We take the positive part:

$$-i\partial_{\phi}\Psi(v,\phi) = \sqrt{|\Theta|}\Psi(v,\phi)$$

- Dirac observables:
 - scalar field momentum:

$$\hat{p}_{\phi}\Psi(v,\phi) = -i\hbar\partial_{\phi}\Psi(v,\phi)$$

• volume at given ϕ :

$$|\hat{v}|_{\phi}\Psi(v,\phi') = \exp[i\sqrt{|\Theta|}(\phi'-\phi)]|v|\Psi(v,\phi)$$

• scalar field energy density at given ϕ :

$$\hat{\rho}_{\phi} = \frac{1}{2} \widehat{V^{-1}}_{\phi} \hat{p}_{\phi}^2 \widehat{V^{-1}}_{\phi}$$

where $\widehat{V^{-1}}_{\phi}$ defined analogously to $|\hat{v}|_{\phi}$.

$\Lambda < 0$

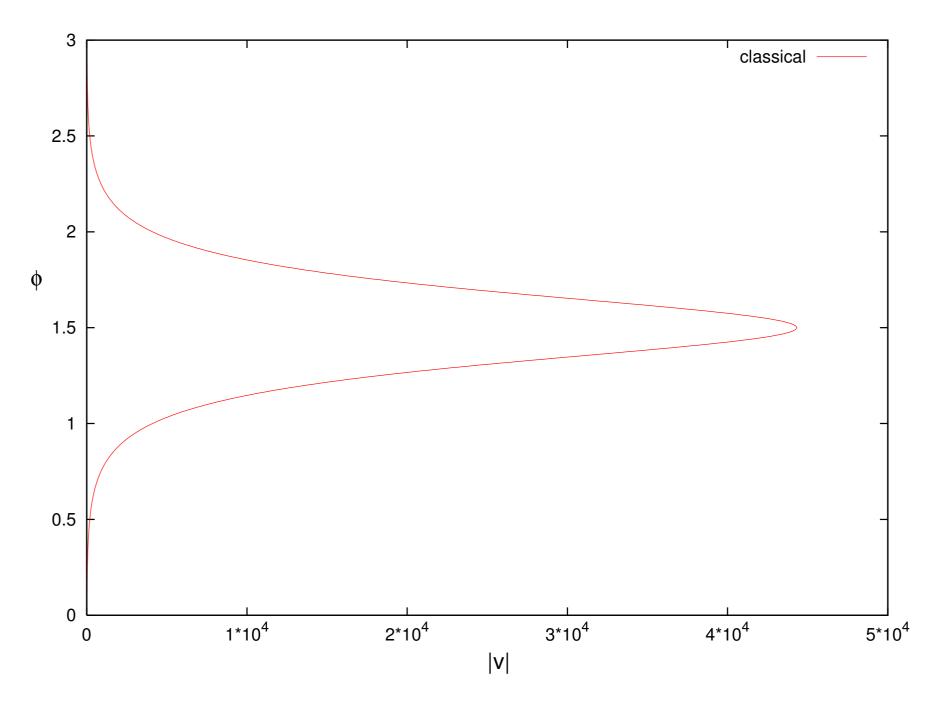
Work by: E Bentivegna, TP

- Classically recollapsing system: recollapse when energy density of ϕ satisfies: $\rho_{\phi} + \Lambda/8\pi G = 0$.
- ▲ A acts approximately like +ve v^2 potential. Θ is positively definite, essentially self-adjoint, its spectrum is discrete (Lewandowski, Kaminski, Szulc arXiv:0709.3120).
- Normalizable eigenfunctions singled out numerically. Each normalizable eigenspace 1-dimensional. Basis $e_n(v)$ of physical Hilbert space selected out of normalized eigenfunctions.
- **Physical states:** $\Psi(v,\phi) = \sum_n \tilde{\Psi}_n e_n(v) \exp[i\omega_n(\phi \phi_o)].$
- Choice: Gaussian states sharply peaked about $\omega^* = \hbar^{-1} p_{\phi}^*$ and some large v^* for some initial $\phi = \phi_o$

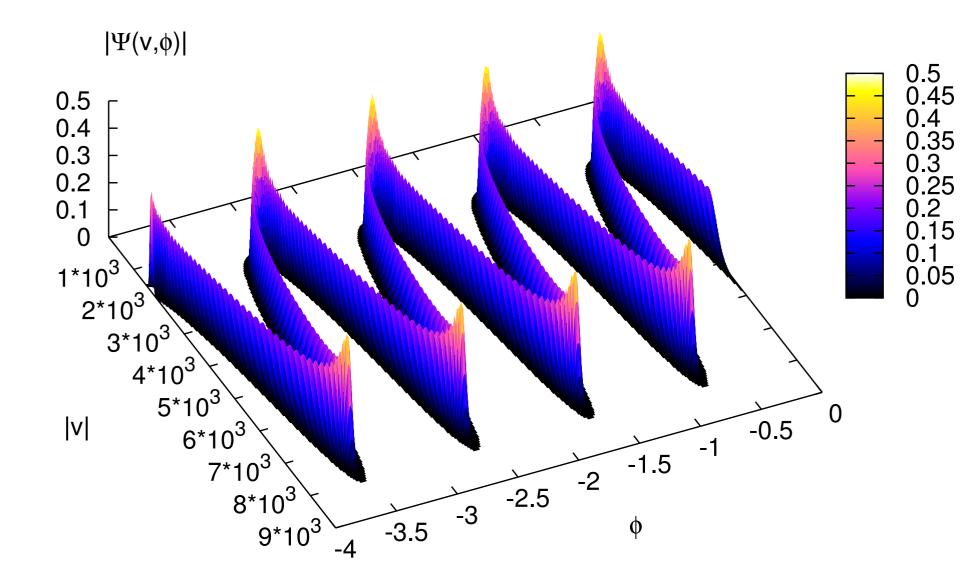
$$\tilde{\Psi}_n = \exp(-(\omega_n - \omega^*)^2/2\sigma^2)$$

Dirac observables: \hat{p}_{ϕ} , $|\hat{v}|_{\phi}$, $\hat{\rho}_{\phi}$.

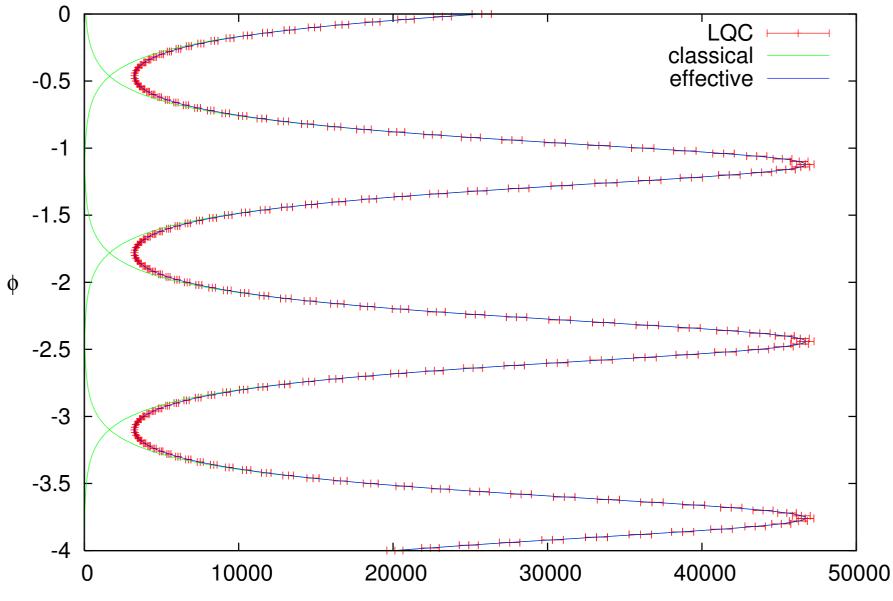
$\Lambda < 0$: classical trajectory



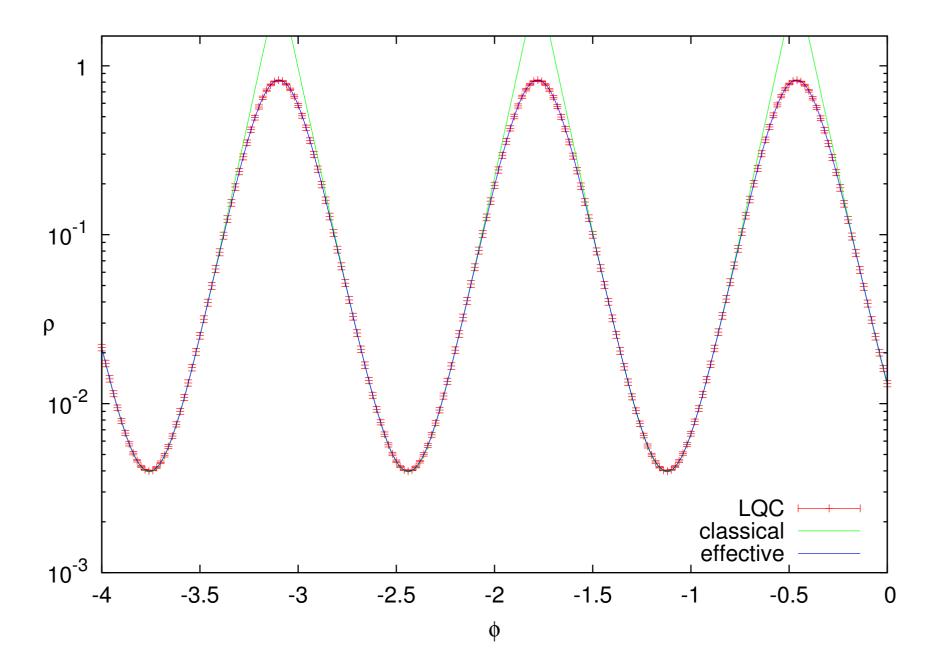
$\Lambda < 0$: wave function



$\Lambda < 0$: quantum trajectory



$\Lambda < 0$: energy density



$\Lambda < 0$ – results

- State remains sharply peaked throughout the evolution.
- Expectation values follow classical trajectory till (total) energy density becomes comparable to ρ_c . In particular recollapse at the point predicted by classical theory.
- Bounce exactly at $\rho_{\phi} + \Lambda/8\pi G = \rho_c$ joins two large semiclassical sectors.
- Singularities are resolved replaced by a quantum bounce.
- Solution Resulting evolution is periodic (with period depending on Λ).
- Dispersion between cycles:
 - Separation between eigenvalues approaches constant

$$\omega_n - \omega_{n-1} = \Delta \omega(\Lambda) + O(\omega_n^{-2}) \qquad O(\omega_n^{-2}) \le \frac{A(\Delta \omega)^2}{\omega_n^2}$$

Heuristic (numerically confirmed) limit on spread

$$\delta \frac{\Delta v}{v} \le \tilde{A} \frac{1}{\omega^2} \frac{\delta \omega}{\omega}$$

• Consequence: very slow spread. For $\Lambda \approx -10^{-120}$ and $V_{\rm MAX} \approx 1 {\rm MPc}^3$ dispersion grows twice in 10^{70} cycles.

$\Lambda > 0$

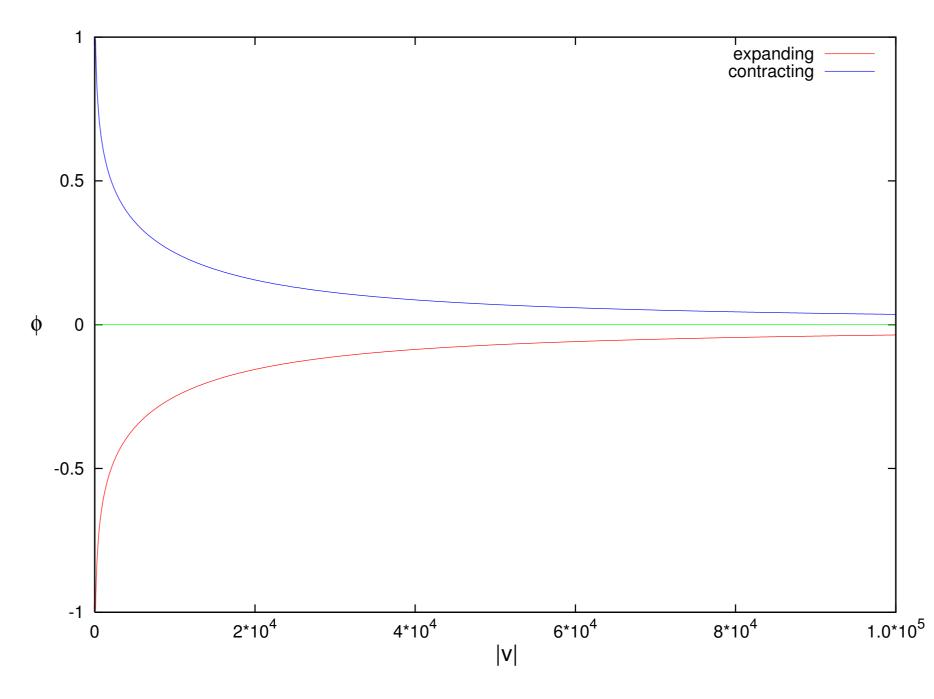
Work by: A Ashtekar, TP some mathematical aspects: W Kaminski, TP

- Classically two distinct classes: ever-expanding and ever-contracting. In both classes v reaches infinity for finite $\phi = \phi_o$. Solutions parametrized by proper time end there. However ...
 - Original domain of v can be compactified.
 - Classical EOM can be analytically extended. Each solution extends uniquely through $v = \pm \infty$.
 - Behavior of energy density $\rho(\phi)$ (also analytic) shows that procedure doesn't add any new regions but identifies $v = +\infty$ with $v = -\infty$.

Extended solutions: at infinity universe transits from expanding to contracting phase.

On the quantum level: contribution from cosmological constant acts approximately as $\propto -v^2$ potential (unbounded from below). Hamiltonians of such system are usually not (essentially) self-adjoint. To verify self-adjointness we analyse the deficiency subspaces.

$\Lambda > 0$: classical trajectory



$\Lambda > 0$: self-adjoint extensions

For simplicity we focus on the case $\epsilon = 0$.

Deficiency subspaces $\mathcal{K}_{\pm} \subset \mathcal{H}_g$: spaces of normalizable solutions to
 $\langle \varphi_+ | \Theta^* \mp iI | \psi \rangle = 0, \quad \psi \in \mathcal{D}$

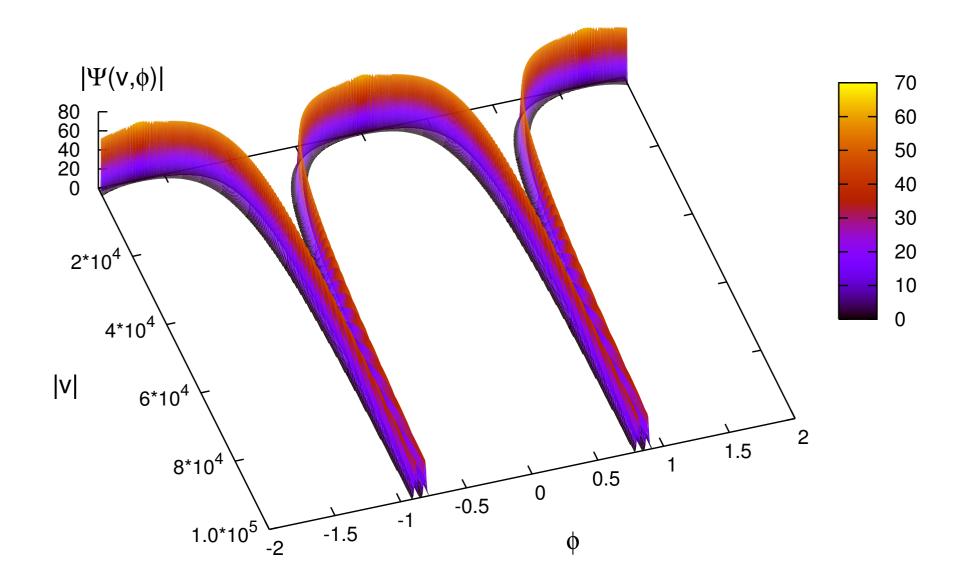
found numerically (as solutions to difference equation).

 In symmetric sector solutions unique up to global normalization. dim(K₊) = dim(K₋) = 1 − domain of Θ has many extensions. All of them are defined by unitary transformations U_α : K₊ → K₋:

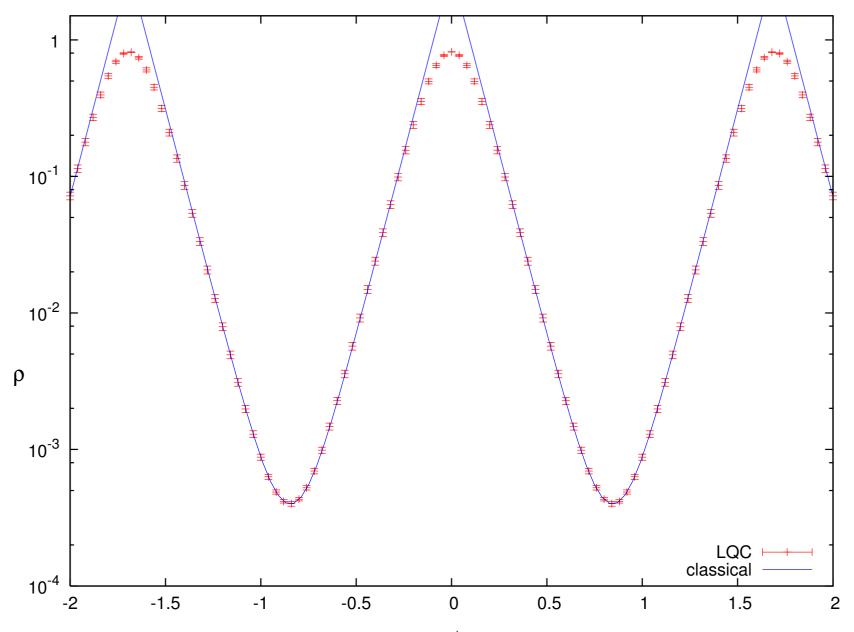
 $\mathcal{D}_{\alpha} = \{\psi + a(\varphi_{+} + U_{\alpha}(\varphi_{+})); \psi \in \mathcal{D}, a \in \mathbb{C}\}$

- All U_{α} are of the form $U_{\alpha}\varphi_{+} = e^{i\alpha}\varphi_{-} 1D$ family of extensions.
- Since \mathcal{D} finite combinations of $|v\rangle$ all $\Psi \in \mathcal{H}_{phys}$ have the $v \to \infty$ limit of the form $a(\varphi_+ + U_\alpha \varphi_+)$. Basis of \mathcal{D}_α – eigenfunctions with this limit.
- **Proof** Result: All extensions Θ_{α} of Θ have discrete spectra.
- Physical states have form analogous to ones for $\Lambda < 0$. We can repeat the construction + analysis done for that case.

$\Lambda > 0$: wave function



$\Lambda > 0$: energy density



$\Lambda > 0 \textit{-results}$

The results are the same for all extensions:

- States remain sharply peaked through the evolution.
- States follow classical trajectory until total energy density approaches critical one, when gravity becomes repulsive and state bounces.
- Bounce joins deterministically contracting and expanding sectors.
- Evolution is nonsingular, bounce replaces singularitites.
- For all extensions the expanding universe after reaching infinite volume (or, equivalently $\rho = \Lambda/8\pi G$) reflects back into contracting one.
- Due to quantum bounce and reflection at infinity we again have cyclic evolution.

Comment:

Results are analogous for other values of ϵ . For $\epsilon = 2$ one parameter family of extensions. For $\epsilon \neq 0, 2 -$ four parameter family.

$\Lambda > 0$ role of extensions

- The choice of extension equivalent to selection of reflective conditions at $|v| = \infty$.
- Distinct extensions different phase rotation at reflection.
- For disemiclassical states trajectories and dispersions same within numerical precision. Reason: Existence of unique analytic extension of classical trajectory.
- Sound on Λ : Physical Hilbert space degenerates for $\Lambda > 8\pi G\rho_c$. Explanation: Residual energy density above upper bound.
- Dispersion growth:
 - \forall ext. separation of ω_n approaches uniformity similarly to $\Lambda < 0$ case

$$\omega_n - \omega_{n-1} = \Delta \omega(\Lambda) + O(\omega^{-2})$$

• Consequence: spreadout of semiclassicall state as slow as for $\Lambda < 0$ (c.a. 10^{70} cycles for dispersions to double).

Alternative picture of $\Lambda>0$

Work by: W. Kaminski, J. Lewandowski, TP

- APS approach: \u03c6 used as emergent time, Klein-Gordon like equation, evolution operator has many s.a. extensions. But ...
- Total Hamiltonian constraint C is essentially self-adjoint. Can find \mathcal{H}^{phy} via group averaging. How it is related to extensions ?
- Result of GA: H^{phy} is a single Hilbert space containing all the extensions

 $\mathcal{H}^{\text{phy}} = \int \mathrm{d}\alpha \tilde{\mathcal{H}}^{\text{phy}}_{\alpha}$

where $\tilde{\mathcal{H}}^{\rm phy}_{lpha}$ unitarily related to $\mathcal{H}^{\rm phy}_{lpha}$

One can use GA to construct observables (analogs of $\hat{\rho}_{\phi}$).
Dynamics not yet analysed ...