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MOTIVATION

• Why are Gowdy models important?

• Can we handle the field theoretical Issues?

• Can we consistently quantize in any way?

• What can we learn from their quantization?

• Can we have control on the properties of the quan-
tum theory? (uniqueness)

• Lessons from LQC in order to loop-quantize Gowdy?
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PLAN OF THE TALK

1. Some History

2. Classical Preliminaries

3. Quantum Preliminaries

4. Quantum Theory I: Non-unitary evolution

5. Quantum Theory II: Unitary evolution

6. Uniqueness
Work of many people, including F. Barbero, B. Berger, AC, J. Cortez, V. Husain, G.

Mena-Marugan, C. Misner, M. Pierri, C. Torre, JM Velhinho, E. Villaseñor, D. Vergel,

and more ...
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1. SOME HISTORY

• 73’ The Gowdy model is first quantized (Misner & Berger)

• 80-90’s Gowdy model reconsidered from the connection’s per-
spective (Husain, Mena-Marugan)

• 02’ New systematic quantization (Pierri).

• 02’ Pierri’s quantization shown to be non-unitary (AC, Cortez,
Quevedo, Torre).

• 05’ New unitary quantization found (AC, Cortez, Mena-Marugan)

• 06-07’ Quantization is shown to be unique (AC, Cortez, Mena-
Marugan, Velhinho)

• 07-08’ Results generalized to S2×S1 topology, including unique-
ness (Barbero, Cortez, Mena-Marugan, Villaseñor)
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The Beginning

Rough idea: We want to go away from homogeneity but still
have some control. Can we do it?

Yes! Answer: Polarized Gowdy T 3 models

They are the simplest (spatially closed) inhomogeneous cos-
mological models. They possess all the conceptual challenges
of the homogeneous cosmologies, yet have an infinite number of
degrees of freedom.

Classically they are nice: All exact solutions can be written ex-
plicitly.
They are thus natural testing ground for quantization proce-
dures. They also contain (closed) Bianchi I as their homogeneous
mode.

5



WHAT ARE GOWDY MODELS?

A polarized Gowdy spacetime, is a vacuum spacetime on M =
T 3 × R, with two commuting, hypersurface orthogonal Killing
vector fields ∂σ and ∂δ. Thus, the metric only depends on one
angle θ and time. One can write the metric in the following form:

ds2 = eγ e−φ/
√

p(−dt2 + dθ2) + e−φ/
√

p t2p2 dσ2 + eφ/
√

p dδ2

where

γ = − Q̄

2πp
−

∞∑
n=−∞,n 6=0

i

2πnp

∮
dθ̄ein(θ−θ̄)Pφφ

′+
1

4πp

∮
dθ̄

[
Pφφ + P 2

φ + t2(φ′)2
]
.

There is still a global constraint:

C0 :=
1√
2π

∮
dθ Pφφ

′ = 0.
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After a partial gauge fixing in the canonical theory, one arrives
at a reduced description given by,

Sr =

∫ tf

ti

dt

(
P̄ ˙̄Q +

∮
dθ

[
Pφφ̇−Hr

])
, Hr =

1

2t

[
P 2

φ + t2(φ′)2
]

which yields,

φ̈ +
φ̇

t
− φ′′ = 0.

which is the massless Klein Gordon equation on a fiducial metric:

gB
ab = −∇at∇bt +∇aθ∇bθ + t2∇aσ∇bσ

Thus, for this classically reduced system, the problem of quanti-
zation of the geometry is reduced to that of quantizing a (sym-
metrical) massless scalar field on a fixed background, subject to
a unique (quantum) constraint.
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QUANTUM THEORY: PRELIMINARIES

A Fock Quantization:
Construct the 1-particle Hilbert space H out of the space S of
classical solutions of th wave equation. A convenient way is to
produce a complex structure J (J : S → S, J2 = −Id). Then one
can have a Hermitian inner product on S:

〈·, ·〉 := Ω(·, J ·) + i Ω(·, ·)
H is the Cauchy completion of S wrt 〈·, ·〉.
The Hilbert space FH is then the symmetric Fock space.

When the spacetime is static we are in good shape (preferred
choice of J). For a time dependent background, there is no
canonical choice of J (or vacuum).

Can one have in this case physically motivate criteria for con-
structing such a unique theory?
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QUANTUM THEORY I: NON-UNITARY EVOLUTION

Pierri’s choice of complex structure is natural from the form of
the solutions:

ϕ(t, θ) =

∞∑
n=−∞

[Anfn(t, θ) + A∗
nf

∗
n(t, θ)] .

with fn(t, θ) = einθf̄n(θ) = einθH0(|n|t)√
8

. Then one can naturally define,

J̃
[
f̄n(t)

]
= if̄n(t), J̃

[
f̄ ∗n(t)

]
= −if̄ ∗n(t).

The theory we are considering is constructed out of this choice
of J̃, or alternatively, creation and anhilation operators.

Problem: The finite time evolution, that classically is a canonical
transformation, is not unitarily implemented ! (the correspond-
ing Bogoliubov coefficient is not square summable).
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QUANTUM THEORY II: NEW PARAMETRIZATION

Let us define a new field parametrization:

ξ =
√

t φ ; Pξ :=
1√
t

(
Pφ +

φ

2

)
This change of variables is also a canonical transformation. What
does it do? We have a new Hamiltonian:

H̄r =
1

2

∮
dθ

[
P 2

ξ + (ξ′)2 +
ξ

4t2

]
from which,

ξ̈ − ξ′′ +
ξ

4t2
= 0.

which is the symmetric Klein Gordon field propagating on a

static two-torus, but with a time dependent potential V (t) = ξ2

8 t2
.
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We can now write the solutions as,

ζ(t, θ) =

∞∑
n=−∞

[Angn(t, θ) + A∗
ng

∗
n(t, θ)] .

Where gn(t, θ) :=
√

tfn(t, θ). by defining ‘complex coordinates’

bn =
|n|ξ(n) + iP

(n)
ξ√

2|n|
, b∗−n =

|n|ξ(n) − iP
(n)
ξ√

2|n|
.

we can rewrite,

ζ(t, θ) =

∞∑
n=−∞

[Gn(t, θ)bn(t0) + G∗
n(t, θ)b∗n(t0)] .

Gn(t, θ) =

√
t

8

[
c∗

(
x0
|n|

)
H0(x|n|)− d∗

(
x0
|n|

)
H∗

0 (x|n|)
]
einθ.

Here, x|n| = |n|t and x0
|n| = |n|t0.
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With this new decomposition comes a ‘natural complex struc-
ture’:

J
[
Ḡn(t)

]
= iḠn(t), J

[
Ḡ∗

n(t)
]

= −iḠ∗
n(t).

This ‘innocent’ change in field parametrization and complex struc-
ture has the striking property of ‘curing’ the unitarity problem.

The finite canonical transformation corresponding to time evo-
lution is unitary.

b̂(H)
n (t) = αn(t, t0)b̂

(H)
n (t0) + βn(t, t0)b̂

(H)†
−n (t0),

where now the Bogoliubov coefficients βn(t, t0) are square sum-
mable.
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UNIQUENESS

The question here is: How unique is this quantization?
Or, in other words, can we select this quantization as preferred?
Answer: Yes!

Uniqueness Theorem (CCMV): If one requires:
i) Unitary evolution, and
ii) Invariance under the remaining constraint

There is a unique quantum representation!

Furthermore (CMV 07), among a large class of possible field re-
parametrizations, the only choice that satisfies i) and ii) is the
one considered before. As a corollary, the Pierri field parame-
trization does not admit any quantum theory with these proper-
ties. Therefore, these conditions are sufficient to select unique
quantum theory (like Poincare invariance in Minkowski or Diffeo
invariance in LOST).
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CONCLUSIONS

• The Gowdy model is a suitable test ground for quantization

• One can consistently quantize the theory

• There exists a unitary quantum theory

• Asking for unitary time evolution and implementation of re-
maining constraint selects a unique theory

• Quantization is in logarithmic variables (Misner-like)

• This is the WDW theory with respect to which a loopy quan-
tization has to be compared.

• Is there more?
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OUTLOOK

• We have not dealt with the singularity

• We need a full description of the quantum geometry

• We need a full description of the semiclassical states

• A loopy quantization will probably not be in this kind of vari-
ables
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