Results of Auger Follow-up Observations with VERITAS

Jamie Holder

Bartol Research Institute/ University of Delaware

Penn State UID meeting, June 2008

From the Unidentified...

...to the possibly Non-Existent

 Auger have measured a significant correlation between the arrival directions of UHE cosmic rays and a catalog of close AGN (Veron-Cetty & Veron, 12th Ed).

How was it done?

- With an initial dataset, they optimized the significance of the correlation by varying:
 - ψ = angular separation between CR arrival direction and source = 3.1°
 - z_{max} = maximum source redshift = 0.018 = 75Mpc
 - E_{th} = minimum energy of CR events = 57 EeV
 - 15 events in this dataset remain after cuts
- They then applied these cuts a priori to a new dataset, and measured a correlation (13 events, 8 correlate within 3.1°, expect 2.7, Probability of chance occurrence=1.7×10⁻³)

Handle with Care...

- What this is not:
 - Clear identification of close AGNs as the sources of the highest energy cosmic rays, with a measured maximum distance of 75Mpc and a measured IGMF deflection of 3.1°
- What this is:
 - Statistical evidence for a correlation between the CR arrival directions and a source population with a similar distribution to that of close AGNs
- GZK absorption allows for sources out to ~200Mpc and the distribution of distances of the source population is unknown
- Significant correlation is seen for ψ up to 6°. The magnitude of the deflection is expected to vary across the sky (e.g galactic B-fields).
- Starting from the best guess cosmic ray arrival directions, gammarays can be used as tracers to identify the true sources.

- ~50% of the Auger sky is at declination >-10°
- Of the final 27 event dataset, 7 events have declination> -10°
- 4 of these overlap in two pairs:

- Of the final 27 event dataset, 7 events have declination> -10°
- 4 of these overlap in two pairs.
- A number of AGN from the V-C catalogue correlate within 3.1°, with distances above and below 75 Mpc

Field	Source Name	Alternative Name	z	Classification	Angular Size (arcmin)
Pair A	Q $2207 + 0122$	PC 2207 + 0122	0.013	Emission Line	0.18 imes 0.15
Pair A	Q $2207 + 0121B$	$2 {\rm MASX} \ {\rm J22102668}{+}0136432$	0.047	Emission Line	0.53 imes 0.24
Pair A	Q $2205 + 0120$	2MASX J22080139 + 0135290	0.045	Emission Line	0.27 imes 0.17
Pair A	SDSS J22064 $+0106$	2MASX J22062439 + 0106455	0.049	Seyfert 2	0.28 imes 0.13
Pair A	Q $2212 + 0215$	$2{\rm MASX}~{\rm J22151024}{+}0230415$	0.041	Emission Line	0.27 imes 0.13
Pair A	Q $2213 + 0218$	PC 2213+0218	0.041	Emission Line	0.26 imes 0.14
Pair B	NGC 1358	-	0.013	Seyfert 2	2.6×2.0
Pair B	SDSS J03302-0532	NGC 1346	0.014	Seyfert 1	1.27 imes 0.76
Pair B	SDSS J03349-0548	2MASX J03345798-0548536	0.018	Seyfert 1	0.41 imes 0.27

VERITAS

• Situated at 1250m altitude at the Whipple Observatory near Tucson

• All four telescopes operational since March 2007

~80 members over ~20 Institutions in the US, UK, Ireland and Canada

- Davies-Cotton f/1.0 Optics. Total area=110m²
- Installed at Whipple Basecamp on Mt. Hopkins (1275m) in January 2005

Shower reconstruction

Observations

- Fall 2007, Triggered using Director's Discretionary Time
 - Pair A, centred on PC2207+0122
 - 200 minutes, A/B weather
 - Pair B, centred half-way between NGC1358 and NGC 1346
 - 608 minutes, A/B weather

Analysis

- Analysis designed for weak, point-like sources
 - Reflected Region background analysis
 - Cuts :
 - *size*/image > 400dc
 - $N_{tel} = 4$
 - -1.2 < *MSCW/MSCL* < 0.5
 - *θ*²<0.015

Sensitivity

Flux (Crab Units)	Time for 5σ detection
1	2 minutes
0.1	48 minutes
0.05	2.5 hours
0.03	6.1 hours
0.01	47 hours

Results: Pair A

Results: Pair B

Results

Source Name	ON-source	OFF-source	Background	99% confidence upper limits	
	(events)	(events)	Normalization	(events)	$(\text{ ph } \text{m}^{-2} \text{ s}^{-1} > 500 \text{ GeV})$
Q 2207+0122	4	78	0.10	4.6	8.6×10^{-9}
Q $2207 + 0121B$	4	78	0.10	4.6	9.6×10^{-9}
Q $2205 + 0120$	7	73	0.10	9.5	2.3×10^{-8}
SDSS J22064+0106	7	34	0.10	13.4	4.9×10^{-8}
Q $2212 + 0215$	3	35	0.10	7.0	3.9×10^{-8}
Q $2213 + 0218$	0	10	0.10	3.8	3.8×10^{-8}
NGC 1358	26	179	0.10	19.1	1.4×10^{-8}
SDSS J03302-0532	13	170	0.10	6.1	4.9×10^{-9}
SDSS J03349-0548	13	137	0.10	10.8	8.3×10^{-9}

- Production mechanisms for a gamma-ray flux :
 - (I) efficient particle acceleration associated with the same central engine i.e. "bright" CR AGN are bright gamma -ray sources.

- Production mechanisms for a gamma-ray flux :
 - (I) efficient particle acceleration associated with the same central engine i.e. "bright" CR AGN are bright gamma -ray sources.

- Production mechanisms for a gamma-ray flux :
 - (I) efficient particle acceleration associated with the same central engine i.e. "bright" CR AGN are bright gamma -ray sources.
 - None of the AGN targeted here are good standard TeV candidates
 - M87 detection shows that misaligned AGN can be detected
 - ...but M87 is unusual extremely prominent jets
 - note none of the Auger events are coincident with M87
 - (l=76, b=75)
 - 2 overlap with Cen A
 - Cen A is the best (though problematic) TeV target

(II) electromagnetic cascades initiated by proton-photon interactions of the UHECRs on the CMBR.

•

$$p + \gamma_{CMB} \rightarrow p + \pi^0 \rightarrow p + \gamma_{EeV} + \gamma_{EeV}$$

- Flux estimate and source angular extent depends strongly on the IGMF strength, which is essentially unknown.
- Discussion based on Gabici & Aharonian (2005)

(II) electromagnetic cascades initiated by proton-photon interactions of the UHECRs on the CMBR.

 $p + \gamma_{CMB} \rightarrow p + \pi^0 \rightarrow p + \gamma_{EeV} + \gamma_{EeV}$

- Flux estimate and source angular extent depends strongly on the IGMF strength, which is essentially unknown.
 - A) low IGMF (< 10⁻¹² G) = point-like source. TeV photons from cascade.
- Cascade develops through pair production and Inverse Compton, initially in the extreme Klein-Nishina regime

 $\gamma_{EeV} + \gamma_{CMB} \rightarrow e^-_{EeV} + e^+$ $e^-_{EeV} + \gamma_{CMB} \rightarrow e^- + \gamma_{EeV}$

i.e "oscillates" from photon to electron, losing energy until Γ <1, when particle multiplication phase begins

electromagnetic cascades initiated by protonphoton interactions of the UHECRs on the CMBR.

 $p + \gamma_{CMB} \rightarrow p + \pi^0 \rightarrow p + \gamma_{EeV} + \gamma_{EeV}$

- Flux estimate and source angular extent depends strongly on the IGMF strength, which is essentially unknown.
 - B) medium IGMF (10^{-12} to 10^{-9} G) = extended source. TeV photons from cascade.
- Cascade develops through pair production but electrons are deflected and isotropized
- Leads to an "extended pair halo" 10° 20° in extent
- Extremely difficult to detect or put limits on
- Milagro limits might be interesting!

electromagnetic cascades initiated by protonphoton interactions of the UHECRs on the CMBR.

 $p + \gamma_{CMB} \rightarrow p + \pi^0 \rightarrow p + \gamma_{EeV} + \gamma_{EeV}$

- Flux estimate and source angular extent depends strongly on the IGMF strength, which is essentially unknown.
 - C) strong IGMF (> 10⁻⁹ G) = slightly extended source. Synchrotron TeV photons.
- Electromagnetic cascade suppressed by synchrotron losses, but synchrotron photons are in the GeV - TeV range
- Angular size of the emission region for 300 GeV photons is dominated by deflections of the path of the UHECR by the IGMF during the first interaction length.
- a source at a distance of 50 Mpc would have an angular extent of $\sim 0.16^{\circ}$, for B=10⁻⁹

Gabici & Aharonian, 2005

Synchrotron flux: Highest TeV flux for high CR energy cut -off and high B-field

Figure 4. Figure taken from [30]. Spectra for a source located at a distance of 100Mpc. The luminosity in UHECRs is 2 10^{44} erg/s, with a spectral index of $\delta = 2$. TOP: $B_{IGMF} = 0.5$ (curve 1), 5 (2), 50nG(3), $E_{cut} = 10^{21}$ eV. BOTTOM: $E_{cut} = 510^{20}$, 10^{21} , 510^{21} eV, $B_{IGMF} = 1$ nG. Dotted: intrinsic spectra. Solid: spectra after absorption. The VERITAS limit is indicated by the arrow.

- Reasons we might miss a gamma-ray flux:
 - Flux is below our sensitivity
 - True source is outside of our field of view
 - Source is very extended
 - Source is time variable

Summary

- 'Speculative' observations but a positive result would
 - Clearly identify the origin of the UHECRs
 - Probe the strength and structure of the IGMF
- Future Auger results will hopefully identify interesting regions more clearly
- With their high sensitivity and excellent angular resolution, ground-based TeV observatories *may* provide the definitive measurements to identify the sources of the highest energy cosmic rays.