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Systematizing Constraints on EOS

• Number of parameters 
< number of astrophysical observables

• Number of parameters large enough to 
accurately specify an EOS.  Test by accuracy 
in matching the universe of candidate EOSs.
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Want parameterized EOS   p=p(ρ)



Difficulty:

No small, model-independent set of 
fundamental parameters. 

Systematizing Constraints on EOS



Instead, try phenomenological parametrization.
Systematizing Constraints on EOS
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log ρdividing [g/cm3]

Average rms 
error in match 
to universe of 
candidate EOSs

Happily, universe of candidates has 
preferred dividing densities:
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The parameters: p* , Γ1 , Γ2 , Γ3

Ki fixed by continuity (Ipser, Vuille ’99)

These are piecewise polytropes 



• EOS known below nuclear density

• Causality:  vsound< 1


1
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Hard theoretical constraints:
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Of these, only the first –
the largest observed mass – significantly 
constrains the EOS parameter space

It only constrains the parameters in 
medium- to high-density part of core EOS.    

(95% confidence J075-1907)

(PSR J1748-2446)

Hard astrophysical constraints:



Causality, vsound < c, removes the region above 
and in front of the surface, where the EOS is 
too stiff



The constraint is weaker when one demands 
causality only for densities below the largest 
density occurring in stars based on the EOS:
the central density of the maximum mass star
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Largest confirmed spin, 716 Hz, rules out only 
EOSs already regarded as unphysically stiff.  

Because the causality, maximum-mass
and maximum-spin constraints are 
inequalities, they only restrict the EOS 
to a region on one side of a surface in 
parameter space.  





vsound < c 1.7M M>
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Measuring two properties of a single 
star restricts the EOS to a single 
surface (thickened  by the error bars of 
the measurement).

Example:  
Observing mass and radius restricts 
EOS to the surface 

* 1 2 observed observed( , , , )R p M RΓ Γ =



These constraints are model dependent, but 
some have  small estimated systematic errors.  
(Ozel and collaborators, Ozel&Psaltis)

e.g.,  1.4 , 9kmM M R= =




Future Constraints
I and M for the same star, PSR J0737-3039A

in fastest binary pulsar system

M and measure of departure of NS-NS     
waveform from point-particle inspiral

σmode : Mode frequencies for merged star 
prior to becoming black hole. 
Simultaneously know M and inspiral
waveform, but EOS hot, and 
theoretical σ model dependent 



Future observation of moment of inertia to 
10% from double pulsar PSR J0737-3039A?





Constraint surfaces for two 
values of I for a 1.4        star, 
combined with the causality and 
maximum-mass constraints.

M
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Departure from point-particle inspiral at 
lower frequency for NS with larger 
radius,  because the tidal force is greater. 

Stiffer EOS

Softer EOS

34.9 2(1.7 ) 10 dyne/cmnuclearp ρ =

34.1 2(1.7 ) 10 dyne/cmnuclearp ρ =



Simulations by Markakis, Shibata, Uryu –
a first cut, using a few orbits before merger.
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can be extracted from inspiral waveform 
for two            stars at 100 Mpc1.4M
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And a larger R requires a stiffer EOS –
larger pressure p* at average density of star.



The deviation from point-particle inspiral is 
dominated by the quadrupole tidal 
deformation of each star. 

For large separations this is given by the 
Love number k:  An external quadrupole 
gravitational field

induces a quadruple moment tensor
5
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Surfaces of constant induced quadrupole 
moment (constant kR5) for fixed tidal 
force:  

(provided by Ben Lackey)



Black-hole – neutron-star inspiral 

Again obtain surface in EOS space by 
measuring departure of NS-BH  
waveform from point-particle inspiral 



Shibata, (Kyoto) 
Kyutoku, 
Yamamoto (Tokyo) 
Taniguchi (UWMn)

Waveforms for 
nonrotating BHs,
mass ratios 2 and 5.

A wide range of possible mass ratios, orbits, 
BH spins, implies a constraint surface 
thickened by uncertainty.



Whether tidal stripping (mass shedding) 
occurs depends on mass ratio and 
NS compactness
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