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Introduction

Careful studies of physical phenomena are invaluable tools to understand the
strengths and weaknesses of the underlying theory. This becomes all more
important for quantizations such as LQC (or those inspired by it) as we do not
yet have a link with the full theory.

One of the expectations is that physical viability will provide constraints on the
theory and various ambiguities. This expectation comes out to be true (many
times). Examples: Phenomenology was first to signal severe problems with old
quantization in LQC. Demanding correct IR and UV limits selects a single choice
(Improved dynamics or sLQC) from a large class of loopy quantizations. All
which is mathematically possible may be not be viable or relevant in physics.

We have very few examples in which a consistent quantization has been
performed, physics completely understood using effective equations and
numerical simulations used to confirm all the results (k = 0 model with
massless scalar with ±Λ and pre-inflationary phase, k = 1 model with massless
scalar). All these are important to trust any model. This leads to many caveats
in other class of works which should be considered prelimenary.

Caveats: Focus on quantum geometric modifications to the gravitational part
only. No inclusion of higher order quantum effects resulting from state
dependent properties. States assumed to describe large classical universe at
late times. – p.3/23



Hamiltonian Constraint (flat model)

Cgrav = −

Z

V

d3x N εijk F i
ab (EajEbk/

p

| det E|)

Procedure: Express Cgrav in terms of elementary variables and their Poisson
brackets

– Classical identity of the phase space:a

εijk(EajEbk/
p

| det E|) −→ Tr(h
(µ)
k {h

(µ)−1
k , V }τi)

(Peak tied to the fiducial volume)

– Express field strength in terms of holonomies and quantize.

Leads to two types of quantum modifications:

(i) Curvature modifications from field strength. Solely responsible for bounce at
ρ = ρcrit ∼ 0.4ρPl.

(ii) Inverse triad corrections (also for the matter part). Not tied to any curvature
scale in the flat model. Lack of predictive power.

aThiemann (98)
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Some Features of New Physics:

– Quantum dynamics described by an effective Hamiltonian (improved dynamics)
(Taveras’s talk)

Heff = −
3

8πGγ2

sin2(λβ)

λ2
V + Hmatt

Leads to modified Friedman dynamics
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8πG

3
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„
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Conservation law is unmodified: ρ̇ = 3H(ρ + P ).

– Consistency and correct UV and IR limit in general selects this quantization
uniquely (Corichi, PS (08)). Also for curved models (PS, Vidotto (08)). Rich physical
and phenomenological applications.Those not covered in the talk includeab c d e

aScaling solutions: PS (06)
bInflationary models: Zhang, Ling (07); Copeland, Mulryne, Nunes, Shaeri (07,08)
cTachyon & Quintom Models: Sen (06); Wei, Zhang (07); Xiong, Qiu, Cai, Zhang (07)
dCovarint effective action and modified gravity scenarios: Olmo, PS (08)
eFeatures of big bounce: Mielczarek, Szydlowski, ... (08) – p.5/23



Einstein Static Universe

An initial singularity free closed FRW model with a positive cosmological
constant in GR. Leads to Emergent Universe scenario: initial state for the past
eternal inflation. Universe originates as an Einstein static and evolves to inflate
and lead to a “hot big bang” (free) standard model.
→ It may be possible to construct a singularity free inflationary spacetime.

Problem: Einstein static model is unstable to homogeneous perturbations.
Emergent universe scenarios are heavily fine tuned.

However, we expect that gravity is modified at high curvatures and it will be
naive to expect no change in the properties of the phase space and existence of
critical points.

Quantum geometry modifies the scenario.a Consider the model with a Λ and
matter. Analysis of dynamical equations results in two critical points allowing
static solutions. New critical point admits Einstein static even without
cosmological constant. (However, the critical point is unstable).

For Λ > 6.6πM2
p , and matter obeying strong energy condition w > −1/3 there

always exist a stable (centre) critical point.
→ Can we have a viable model of the early universe?

aParisi, Bruni, Maartens, Vandersloot (2007)
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Anisotropic Model: Cosmological Magnetic Fields

Existence of bounce is anisotropic models is an important issue. Shown for matter
with vanishing anisotropic stress (massless scalar + radiation). Anisotropies
bounded and shear conserved. a Effective Hamiltonian:

Heff = −
p1p2p3

κγ2∆
(sin(µ̄2c2) sin(µ̄3c3) + ...) + p1p2p3 ρ

For matter with no anisotropic stress: pici − pjcj = γVoαij , αij = constt.

Does the bounce survive on including matter with anisotropic stress?

An important question since in the early Universe cosmological magentic fields can
potentially affect the scenario. Consider a model with magnetic field stress tensorb

Hmag =
1

2
a3(a2

1B
12

), (B2 = B3 = 0)

H1 + H2 = γ12/a3, H1 + H3 = γ13/a3, H2 − H3 = (γ12 − γ13)/a3

Depending on whether a2 = a3, we have an axisymmetric (a1 → 0) or non
axisymmeric approach to the singularity (a1 → 0 and a2 or a3 → 0)
In both cases, LQC predicts a bounce with bounded anisotropies. However, shear is
not conserved.

aChiou, Vandersloot (2007)
bMaartens, Vandersloot (2008)
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The Cyclic Model

An alternative to inflationary spacetime (Steinhardt, Turok, Khoury (2001)).
Important insights on the behavior of the universe and its homogenization (due
to ultra-stiff matter) near the singularity.

An open problem: What happens when the branes collide? Can quantum
gravity resolve the singularity? (Pretorius’s Talk)
Effectively we need to consider the dynamics with the cyclic potential

V = Vo(1 − e−σ1φ)exp(−e−σ2φ)

Brane collision corresponds to φ → −∞. In the classical theory, the Hubble
diverges and there is no turn around of the radion field.

φ̇2 =
3

4πG
H2 − 2V

(V < 0 in the region of interest. φ̇ can not vanish!)

As the radion rushes to the bottom of the potential, the energy density (and
curvature) quickly become super-Planckian (for realistic choices of parameters).
The quantum gravity effects may modify the scenario in a non-trivial way.

Can this singularity be resolved in LQC?

– p.8/23



Isotropic Loop Quantum Cyclic model

Use the modified Friedman dynamics to analyse Cyclic potential. a Ignore
anisotropies for simplification.
As the field rolls down the potential, ρ → ρcrit and there is a bounce. The singularity
is resolved but the field does not turn around. At the bounce

φ̇2 = ρcrit − V, V < 0 ⇒ φ̇ 6= 0
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No viable loopy cyclic model (atleast in the isotropic case).

aPS, Vandersloot, Vereshchagin (2006)
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A more complete Loop Quantum Cyclic Model

Situation changes if we do not simplify and include anisotropies.a Consider
anisotropies using Bianchi-I construction (Wilson-Ewing’s Talk)

Results: The universe bounces at Planck scale, anisotropies remain bounded
and the field turns around!

t
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A non-singular viable alternative to inflation possible.

aCailleteau, PS, Vandersloot (2008)
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Is singularity resolution generic?

Any counter examples?

– p.11/23



Types of Singularities

Big Bang/Big Crunch: The scale factor vanishes in finite time. Energy density,
pressure blow up. All of the curvature invariants diverge. Inevitable fate of the
matter satisfying null energy condition (except Λ): ρ + P ≥ 0.
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Types of Singularities

Big Bang/Big Crunch: The scale factor vanishes in finite time. Energy density,
pressure blow up. All of the curvature invariants diverge. Inevitable fate of the
matter satisfying null energy condition (except Λ): ρ + P ≥ 0.

Type I singularities (Big Rip): Common in a class of dark energy models. Occur
at a finite time. The scale factor, energy density and pressure diverge. All
curvature invariants diverge. Dominant energy condition is violated: |ρ ± P | ≥ 0.
The universe rips apart!

Type II singularities (Sudden): Discovered by Barrow and co-workers. Occur at
finite value of scale factor. As the singularity is approached the energy density
vanishes but pressure diverges, causing divergence in spacetime curvature.
Energy conditions may be violated only near the singularity.

Type III singularities: The universe rips suddenly. Singularity occurs at a finite
value of scale factor. Curvature invariants diverge.

Type IV Singularity: Occurs at a finite value of scale factor. Energy density and
pressure remain finite. Curvature invariants are bounded. However, curvature
derivatives diverge.
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Various works on future singularities

Sami, PS & Tsujikawa (2006): Showed that the Type I big rip singularity
occurring in certain phantom models (w < −1) can be successfully resolved in
LQC.

– p.13/23
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Various works on future singularities

Sami, PS & Tsujikawa (2006): Showed that the Type I big rip singularity
occurring in certain phantom models (w < −1) can be successfully resolved in
LQC.

Samart & Gumjudpai; Naskar & Ward (2007): Phantom dynamics with
exponential potentials. Big rip avoided.

Wu & Zhang; Fu, Yu & Wu (2008): Interacting phantom models. Type I
singularity resolved.

Kamenshchik, Kiefer, Sandhofer (2007): Some quantization aspects of Type II
singularity studied.

Cailleteau, Cardoso, Vandersloot & Wands (2008): Exponential potential
(unbounded) in phantom model. A Type I singularity exists in classical theory.
Quantum geometry makes it a Type II singularity. Quantum geometry does not
prevent divergence of spacetime curvature. Artifact of a particular
potential/model? Unphysical matter? Breakdown of effective equations?

PS (2008): Generalized model including all types of singularities. Shows above
results to be a special case in a large class.
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Modeling singularities

Let us consider a dark energy model based on the ansatz: a

P = −ρ − f(ρ), f(ρ) =
ABρ2α−1

Aρα−1 + B

Using the conservation law (which is unmodified also in LQC):

ρ =

„

−
A

B
±

„

A2

B2
− 6(α − 1)A ln

„

a

ao

«««1/(1−α)

We probe the dynamics using Friedman and Raichaudhuri equations in classical as
well quantum theory.

Modified Raichaudhury Equation:

ä

a
= −

4πG

3
ρ

„

1 − 4
ρ

ρcrit

«

− 4πG P

„

1 − 2
ρ

ρcrit

«

At ρ = ρcrit, ä/a = 4πG(1 + w)ρcrit

For w > −1, universe bounces and for w < −1 it recollapses.

aNojiri, Odintsov, Tsujikawa (2005).
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Type I Singularity and its Resolution

Parameters: 3/4 < α < 1, A > 0.

Classically, the ρ,Hubble diverge as a → ∞ in finite time. Curvature invariants
diverge.
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Classical big rip is generically avoided.
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Type II Singularity and its Non-Resolution

A necessary condition to have a sudden singularity is A/B < 0.
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LQC resolves the initial (final) big bang (crunch) singularity. However, the curvature
grows unbounded both in classical theory and LQC when the sudden singularity is
approached.

Quantum geometry does not control divergence of curvature. A generic feature of
Type II models in LQC. (Generalization of conclusion by Cailleteau, Cardoso,
Vandersloot & Wands (2008)).
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Type III Singularity and its Resolution

Parameter: α > 1.

In the classical theory energy density, pressure, Hubble, Ricci, ... diverge as a → ao

in finite time.
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All curvature invariants and Hubble are bounded in LQC.
Type III singularity is resolved.
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Type IV Singularity and its Non-Resolution

Parameter: 0 < α < 1/2. Given a value, it determines the order of dervative of R
which diverges.
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The Hubble and Ricci curvature are bounded and finite at the Type IV extremal
event in both classical theory and LQC. However, derivative of R diverges. All
curvature invariants are finite.

LQC does not resolve this curvature derivative singularity.
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When is a singularity really a singularity?

– p.19/23



Nature of Singularities

Hawking, Penrose, Geroch Incompleteness Theorems: Existence of geodesics
which can not be continued to arbitrary values of the affine parameter.
“A spacetime is singularity free if it is geodesically complete.” Sagredo a

What happens at or near the singularity? What does an observer experience?

Ellis & Schmidt: A singularity is strong if in falling objects or observer (along with
his/her apparatus) experience infinite tidal forces and are thus destroyed. Else
the singularity is weak. Strong detectors will survive.

Tipler’s criteria: In the FRW case, singularity is strong if the volume vanishes (or
diverges). The following integral diverges as τ → τe:

Z τ

0

dτ ′

Z τ ′

0

dτ ′′Rabu
aub

Krolak’s criteria: Weaker than that of Tipler. If τ → τe the singularity is strong if
following integral diverges:

Z τ

0

dτ ′Rabu
aub

aWhat is a singularity in GR? (Geroch, Ann. Phys. 48, 526 (1968)) – p.20/23



Results from a general analysis

Type II and Type IV singularities are not real singularities, even classically
(Fernandez-Jambrina, Lazkoz (2006)). The Hubble is bounded and singularity
occurs at a finite scale factor. This implies these are weak a la Tipler & Krolak.
Geodesically complete extremal events (t′′ = −Ht′2, t′2 ∼ 1/a2). Analogs of
shell crossing singularities.
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be torn apart. Strong curvature singularities may be completely eliminated or
tamed to weak ones. An example is the work of Cailleteau, Cardoso,
Vandersloot & Wands.

LQC ignores harmless weak curvature singularities. Quantum geometry does
not seem to over kill. – p.21/23



Does LQC act smart?

LQC seems to act in a simple and efficient way. It does minimal required to
resolve the singularities. Why?(Corichi, PS (2008))

Tied to a careful quantization of the Hamiltonian constraint which leads to
improved dynamics (APS papers, sLQC).

Compute the expansion congruence of the geodesics for cosmological
observers

θ = gabBab, Bab := ∇bξa

It turns out that θ = K = β/γ. And that is bounded in the improved quantization!

Consistency conditions and demanding correct IR and UV behavior picked out β
uniquely from a very large class.(Corichi, PS (2008)). In a large class of loop
quantizations, (β, V ) is the only choice which guarantees geodesic
completeness.
Harmonious convergence of various results.

Interesting results for the Bianchi and Black Hole interior spacetimes.

– p.22/23



Summary

Phenomenological models act as useful guides and initial probes to venture in
to unknown regimes of quantum geometry. However, they should be used and
interpreted with lot of care. They can teach us many lessons and revise some
intuitions.

The issue of (traditional) past (or future) singularity has been investigated in
various models. Big Bang and Big Crunch are resolved. Bounce is generic in
various situations (at an effective level).

Earlier results on cyclic model based on ad-hoc suppression of anisotropies led
to difficulties. The model turns viable in a more general treatment.

Quantum geometry effects do not necessarily bind the curvature. There may
exist physically interesting scenarios in which curvature diverges. However,
these should be viewed as analogs of shell crossing singularities. Atleast for
k = 0 model these are harmless extremal events and one can say that quantum
geometry resolves all types of physical cosmological singularities.

What are the lessons for more general cases? We should be careful in posing
the singularity resolution question. Geodesic completeness is the key and
curvature boundedness may be misleading in some situations. Problems with
certain spacetimes (BH) may be resolvable.

– p.23/23
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