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wotivatiown

coswological predictions of quantum gravity

the inflationary paradigm provides a causal explanation for the
primordial fluctuations with the correct features as weasured tn CMB

despite its successes, inflation has many shortcomings

nflatow has wot been measured in particle physies experiments
the parameters of inflation need (too) oftew to be fine-tuned

inflation is still a paradigm in search of a model

Lwﬂatww haust prove Ltsel‘{ generc calzettn, sakellariadou 1991, 1992

glbbons, turok 2006
germant, nelson, sakellariadou 2007

ln addition, there are questions that inflation does wot adavress:
= what preceded inflation? --- the singularity is not resolved

» trans-Planckian pmbwm




to address fundamental tssues, we need a theory of quantum gravity

a quantum theory of gravity is expected to:
= cure classical singularities of GR

= provide information about initial conditions of the universe

cosmology plays a dual role in quantum gravity, as:
" 4 setting for < to explain physical features of the universe

" 4 testing ground for any full theory of R4




LRG: a wowperturbative and background tndependent canonical
quantisation of GR in 4 space-time dimensions

LQRC: a cosmological mini-superspace model quantised with wethoas
of full LRSG theory

LRLC: SU(2) holonowies of the connection ﬁ §triads hy

" classical theory
curvature can be expressed as a Limit of the holonowmies around a Loop

as the area enclosed by the Loop shrinks to zere

" quantum geometry
the Loop cannot be aowtiwuws% shruwnk to zero area

the elgenvalues of the area operator are discrete
there is a swallest nonzero elgenvalue, the area gap JAY

the WDW equation gets replaced by a difference equation whose
step size is controlled by A




Lsotrople models: a(t)

il = o’

V.,

triad component conjugate tg":
the connection component

(6.5} = 5%

k = 8nGG
c:Vé/gé

6y =4




old guantisation: follow procedure used tn full LRG
ashtekar, bojowald, lewandowski 2003

6”4“’0/ 2, P :classical variables, with well-defineol
" operator analogues

arbitra rg veal nunber

e'l? = (c|p)

the elgenstates of D are the basis veetors | 11)

A’ > L ,ﬁyyhm“ > the elgenstates ?{ ]3 S?JELS{H
p ,u — 6 ,u the orthowormautg condition:

(1lp2) = Oy

Ln the old quantisation, the operator e’tﬂoc/ 2 acts as a sbmple
shift operator




volume operator: TV = /‘;‘3/2

| 4

volumee of the elementary cell with eigenvalues: V,

diagonal tn|p4) basis

proportional to the length
of the holonomy




Hoamwlltonlan constralnt

the gravitational part of the Hamliltonian operator tn terms of
SU(2) holonomies and the triad component:
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actlon of the seL{—adjoLw’c Hamdiltonlan constraint operator

A

He, = (@g + @g)/2 on the basis states ’,u> Ls:

. , . . .
Herav 1) = 3 { [B(p) + R(p+4po)] [+ 4p0) — 4R ()| ) + [R(p) + B(p — 4po)] | o — 4p10) }
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0{5 namtics are thew determinedd bg the Hamiltonlan constratint:

(Hy + Ho)[P) =0

full theory: infinite nunmber of constraints
LRC: only one tntegrated Hamiltonian constraint

matter Ls introduced by adding the actions of matter components to
the gravitational action
(Just adol the matter contribution to the Hamiltonlan constraint)

obtain difference equations analogous to the differential Wpw egs




the constraint wu/cat’ww:
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vanoersloot 2005

physieal wave-functions

the matter Hamiltonlan ’}—[¢ s Assumed to act dingonally on the basis states
with eigenvalues H &

quantum evolution equation
there Ls no continuous variable (the scale factor in classical cosmolog 5), but a
Label with discrete steps

the wave-function W (@) depending on internal time (1 and matter fields ¢
determines the dependence of matter flelols on the evolution of the universe




lattice reflnenment

old quantisation: quantised holonomles are fixed operators of fixed
magnitude FENIL fngtabilities in continuum semi-clssical Limit

for a large semi-classical universe, the WDBW wiave- ~function would be
oscillating on scales of oroler (CL V A)

as the universe expands, this scale becomes eventually smaller than the
discreteness seale of the difference equation of LQC

= the discreteness of spatial geometry would become apparent in
the bel/\a\/ww of the wave-functions deseribing a classical universe

VDSBVL,JMVL@ § khanna 2006

bojowald, cartin § khanna 2007




the form of the wave-functions indicates that the period of oscillations
cawn decrease as the scale tnereases

EELIII O sufﬁc’uewt% large scales the assumpt’wm, that the wave-

discrete coMtLLUOUS

this would lead to @G corvections at lavge scale (classiceal) phws’ws

to avold this, was one of the motivations behind Lattice refinement
bojowald § hinterleitner 2002

vandersloot 2005




allowing the length seale of the holononies to vary, the form of the
difference equation changes

assuming the lattice size is growing, the step-size of the difference
equation s not constant tn the original triad variables

the exact form of difference equation depends on lattice reflnement

1/2

particular case: o — ,&(,u) = ot

ashtekar, pawlowskl, stingh 2006

the basic operators are given by replacing 0O with [

A

upon quantisation 62ﬂc/2‘ﬂ> — €_iﬁ%‘ﬂ>

which is no longer a shift operator sinee [j is a function of [




change the basts to:

in the new variables

the holonomies act as
stmple shift operators,
with parameter length |1

1
9

{f )+ U (v + dpin ) JL |; +4pin) — 20 (1) |1 )+ —}{ Uw)+U (v — 4ii0) Jl» |J —4pin)

vandersloot 2006

Ulv) = v+ pol — |V — o




expand the general state in the kRinematical Hilbert space in
terms O‘f the basls states |1|Ir ) = E ) U, () |J

Hoamlltonlan constraint:

1
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terms of 14
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’LmLLcat’wws or Lwat’ww

nelson § sakellariadou PRD (2007) [0706.0179]
movmentum potential
classically, the matter " i
part of the Hamdiltonian
for & wmassive scalar fielol

to qua ntlse Lt use:

L the contlnuum Limeit:
1/2

Ky

Ln the Large scale Limit, the equation to be solved Ls:

p 2 o2 (5720 5.0)) | + BV O 200 0) =0

5 =96/ (xh?)



approximate dynamics of the inflaton field by V() = qup ;5—3/ 2

consta v.;,t slow-roll

6=3/2
by separation of variables: \If(p, ¢) — T(p)q)(¢)

Ln the large seale Limit:

mtegmtwm const&mts




for the end of inflation to be describable using classical gR, it must
end before a scale, at which the asswmption of pre-classicality breaks
down and the semi-classical description is no longer valid, is reached

the separation between two —_ T 1-24) /4
P , Ap = —f=p!1 =)/
successive zevos of 1, Ls: NEIZ

for the continuwm Limit to be valid the wave-function must vary
slowly ow scales of the order of 4




tf half of inflation
takes place n
L classieal era, thew

g ~1.91 x107°

_ 1 V(¢)
75miMY V(O L — g

combining:

for Lattice refinement:

for fixed Lattices:
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Lattice refinement and the matter Hawmiltontan

nelson § sakellariadou PRD 76 (2007) 104003

MSSI/LVI/L/LVL@: I& p— ,UO,UA

5 S
then V= [ f% leads to ) = M/f)%b—fl)

wWheeler-De Wit constraint equation: (Hg -+ H¢)’\If> — ()

expanding tn the UV > (Lo  Limit and under the assumption
of pre-classicality, the quantum constraint eq. beconmes:

(v, ) N B 0¥(v, o)
o2 2 OJv
' 1 — 44 . 1 — 10A
— B -
(14 24)(4A — 1) + 124(24 — 1)
8(1 — A)?

+ 671/_2'\1}(1/, o) + 37‘[@1/_8/2\1’(1/: ¢) + O (j1p) =0




to solve the constraint equation we need the specific form of  H 4

lavge-seale limit:  H ;= e(gb)yé

Ln the large-seale Limit the matter
Hawmdiltonlan can be approximated with:

constant w.r.t. U

only valid for v > 1




requirenents for the wave-functions:

" wormalisable solutions

finite norm of physteal

wave-functions is conserveo (W3] Wa)ptys = / vy, 0,

D=0o

.. the solutions of the constraint are normalisable provideo
' they decay, on Large scales, faster than /(20

I constraints on the scale dependence of matter component

" the solutions are valid on large scales, so the large argument
expansions of Bessel functions should apply in this limit

" the solutions should preserve pm—zzwssa’am&gj

I constratnts on 2-oim parameter space (A7 5)




full Lec theory allows only the range. ) < A < — 1/2

338
s223
b

bojowaldl, cartin § Rhanna 2007

Y

for a varyin
lattice 12‘?7'é
it is not always
possible to treat
the Large-scale
behaviour of the
~ wave-functions
- perturbatively

| |
(0.5 0 0.5
A

Limit of Non- Break down of
Bessel Expansion normalisable preclassicality

nelson § sakellariadou PRD 76 (2007) 104003
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unioue factor ordering in the continumm limit of LRC
nelson § sakellariadou PRD #& (2008) 024006

Hamlltonlan constralnt:

c o ;m “Z ik (/) by B [/m Y D

many posstble cholces o{ tl/le factor ordering could have been. made

each cholce lead sto different factor ordering of contbnuum Wpw

constder only factor ordering of the form of cyclic permutations
of holonomy and volume operators with troce

find the actlion of diffevent factor ordering cholees




fi = pop
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take continuum Limit by expanding wy ~ w(V) as Taylor expansion tn
small k/v [discreteness seale (R) << scale of universe (given by v)1

Large scale continuum Limit of Hamiltonlan constraint:

[ ¥ AP K 2 .“"‘l?
—300 _3/12(1-4) 13 Z (1424)/[2(1-2)] d L
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e
X
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repeat the same analysis for all other factor orderings

for A=-1/2 all of them give the same continuwum Limit

3/2

Using [~ D = 0% and v~ p3/% , the factor ordering of

WDW eq. predicted by the large scale Limit of LRC Ls:




LRC predicts unique factor ordering of WDW eq. in its continuum. Limit

" require that factor ordering ambiguities in LRC disappear at level of WDW eq.

- H
%

Lattice refinement model should be R | / 2




numerieal technigues in solving the guantum constraint equation
of generic lattice-refinement models

there is a complication tn directly evolving 2-dim wave-functions

= [ peal ’mtevpoLat’ww schenee to appmximate the necessary data po’w»ts

sabharwal § Rhanna 2007

" Taylor expansion to perform lnterpolation with well-defined and
predictable accuracy

nelson § sakellariadou PRDFL (2008) 024030




1-dim system: a refined lattice can be mapped onto a fixed lattice by a
chanoge of basis

consioer /1 — ,LL(),[LA

sSomée constant

change of varinbles:

a constant, equal to the magnitude of the shift
operator associated with the new coordinates




full Hamiltonian constraint on a constant Lattice:

1
?S(u) Wyiap — 2V, + U,y = —H,

of the same form as Hamiltonian constraint on a varying lattice:

1 3/2
73

A AP = = A2 [Wpan — 20, 4+ W] = —H,

M




anlsotrople oeometry of black hole Linterilor:

2-dim Hamdiltonian constraint is a difference eq. on a varying lattice

C—i— (luv 7_) [\P;H—Z(SM,T—#Z(ST - \IJ,U,—Q(SH,T—I—Q(ST]
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5 53
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bojowald, cartin § khanna 2007

= 25, (vIr £ 200+ V7]
\/‘T +0r| — \/‘T — s/ ,

matter Hamlltonlan acts

diagonally on basts
states of wavefunction
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caleulate the value of the wave-function
at a particular Lattice site (open square)
are not given by previous iterations

= decreasing functions of /L,
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can be caleulated given suitable initial

for a fixed lattice the 2-dim wave-function
conditions (solid cireles)

68 -
T+44
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Tay Lov EXPO nsitons to caleculate the necessa ry data o’mts:

given a function evaluated at three coordinates, the Taylor
approximation to the value at a fourth position is:

y .] £ \ 4 52 df Y df
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higher-order terms in Taylor expansion can be used to Lmprove the
aceuracy of the system

for slowly varying wave-functions, the linear approximation is
extremely accurate (higher-order corrections being 2 102% )
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the wave-function is caleulated by tterating the >nd prdler corvection
difference eq. using 15 order Taylor expansion

—1/2 1/2

0, 7) = p 0(p, 7) =7




stability of the Schwarszehild interior

a von Neumanw stability analysis of the difference equation

Cy (p, 1) [‘Duwé,[,wz& — \I’;f,—zaﬂ_,HQ&]
+Co () [(p+20,) Wpgas,» — 2 (1 + 2#)/,2-53) U, + (= 20,) W ,_us, -]

00,
+C_ (N* 'T) |:lj[j,(l.—2(3‘u,7'—2(37- — \IJ[I,-—FQ(S,_[,T—Z(ST] — ~—3Hq‘)qju,7 )

1 1

for 0u(p, 7) = prop” 6, 7) = 707

have showwn that the system is unstable for W > 2T

bojowaldl, cartin § Rhanna 2007
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a perturbation of W = 1075 was put in an otherwise empty initial U-row at
p = 230 for the lattice refinement wodel §,(p, 7) = pop ™' 6,(p, 7) = o7}

analytically, the region of stability is given for T > /2, 1e., the amplitude of
the perturbation grows exponentially for + < 115 and oscillates for 7> 115 .
here we confirm this numerically

nelson § sakellariadou PRDFAE (2008) 024020



0r =T

the St&lbﬂitg condition ranges between U < 4’7‘ for A — () (constant Lattice)

anot < 1.587 forthecaseof A = 2.0

/T

critical

[ g
T

phf
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— —1 - _
for 0,1, T) = po /T 01, T) = TOT
assuming the solutions do not change significantly on the scale of the
step-sizes, the difference equation was found to be unconditionally stable

bojowaldl, cartin § Rhanna 2007

numerieally this is indeed true, however as soon as the wave-functions fail to
be pre-classical, they become unstable

a variation of about 0.1%
between the wave-function tin
successive T lattice polnts

the variation grows and when
it reaches a few percent, the
system becomes unstable

995 1000 1002 1004 1006 1008 1010 1012 1014

1016




concluUsLong

LRC: quantised holonomies were taken to be shift operators with a fixed magnitud

the quantised Hamiltonian constraint is a difference equation with constant
Lnterval between points ow the Lattice

these models Lead to sertous tnstabilities L the contlnuwum semi-classieal Limit

LRG: contributions to discrete Hamdiltonian operator depend on the state which
describes the universe

as the universe expands, the number of contributions tnereases, so the Hawmiltonin
constraint operator Ls expected to create wew vertices of a lattice state, which in LRC
result tn a reflnement of the discrete lattice




Lattice reflnement effect can be modelled and this approach eliminates problematic
lnstabtlities in continuum ern

" lattice refinement seems to be necessary to achieve a natural inflationary wodel
" only a limited range of matter components can be supported within a particular choice

= factor ordering ambiguities tn the contlnuum Limit of the gravitational Part of
Hawiltonlan constraint disappear for a particular cholce of Lattice reflnement

there is a complication in directly evolving 2-dim wave-functions, such as those
necessary to stuolﬁ Blancht models or black hole Linteriors

the tnformation needed to caleulate the wave-function at a given lattice polnt is
not provided by previous tterations

Taylor expansions can be used to perform this tnterpolation with a well-defined
and predictable accuracy

Lattice refinement can change stability conditions of the system




