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 The loop quantization of homogeneous cosmological models has 
been studied recently. Besides, a satisfactory Fock quantization of 
inhomogeneous cosmologies has been  achieved: the Gowdy model.

 The Gowdy T3 model is a natural test bed  to incorporate 
inhomogeneities in Loop Quantum Cosmology.

  The simplest possibility is a hybrid quantization.

 The initial singularity appears in the homogeneous solutions of the 
model (Bianchi I). How does the inclusion of inhomogeneities 
affect its quantum mechanical resolution?

 Does the loop quantization of the zero modes suffice to resolve the 
singularity? (Different from the “BKL” approach).

 Questions in mind are internal time, semiclassical behavior, 
validity of the Fock quantization, perturbative approaches...
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 Classical system 
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 We consider Gowdy T3 cosmologies with linear polarization.

 The classical metric is (with                  ):

 

 Generically,          is a curvature singularity. 

 Fixing the gauge, except for the zero modes of the   -diffeos and 
scalar constraints, we get with a suitable field parametrization:

      is homogeneous and     has no zero mode.  
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 Choice of variables   
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 The zero modes can be viewed as the degrees of freedom of a 
Bianchi I model.  

 In a diagonal gauge, the corresponding Ashtekar variables are 

                                                       

 Expand the field and its momentum in Fourier modes,                   
and introduce the variables:

 The complex structure that is naturally associated with these 
variables determines a Fock space       

 This is the unique  Fock quantization with a unitary dynamics 
and a natural implementation of the remaining gauge group.
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 Remaining constraints 
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 The diffeomorphisms constraint generates S1 translations.

 It does not depend on the zero modes.

 Scalar constraint: Bianchi I plus the inhomogeneous Hamiltonian.
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 Bianchi I: representation 
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  We call                             The Hilbert space          is the tensor   
 product of 

 We implement (a possibly modified version of) the proposal chosen
 

by Chiou                        We change to the      -basis.

 Using the standard methods of LQC:

          annihilates all the “zero volume” states:   states in the basis
                             with any             These states get decoupled. 

 In this sense, the singularity is resolved.
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 Bianchi I: Densitized constraint  
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 Restricting to the cylindrical functions and the kinematical Hilbert 
space         without zero volume states, we densitize the constraint:

                              vanishes in                             Then,        does not
  mix the semilattices                                                             (0,2]. 
  The corresponding subspaces         provide superselection sectors.

 In this sense, the constraint equation encodes a no-boundary.
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 Spectrum and eigenfunctions of  
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  The WDW analog of        would be
  

         (with domain the span of the    -states in the semilattice         ) 
is essentially self-adjoint and has absolutely continuous spectrum. 
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  Bianchi I: Physical states  
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 

 Since        are observables and we know their associated resolution 
of the identity, it is straightforward to solve the constraint. 

 The same results can be obtained with group averaging. Physical 
states have the form

with the Hilbert structure                                                             and
 

 A complete set of observables is given by 
   for any given section      
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 Hybrid Gowdy model 
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  The kinematical Hilbert space is

 The inhomogeneous part      of the constraint annihilates also the 
zero volume states. Since these decouple, we can restrict ourselves 
to

 

 We then arrive at the densitized constraint: 

 We have represented the variables          by      , like in Bianchi I. 

 Then,        and       are observables, but       is not.
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 Densitized constraint 
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 If we view the constraint as an evolution equation,     plays the 
role of internal time.

. 

 Superselection: we restrict to  

 We define       with domain the span of

  

 The operator is well-defined and symmetric.
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 Eigenvalue equation: formal solutions 
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  The (complex) eigenvalue equation for       leads to

Substituting  

we get  

             is the set of paths from 0 to      with  jumps of 1 or 2 steps.
          are the points followed by a jump of 1 step.       
        denotes path ordering.
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 Observables and physical states 
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  Solutions to the constraint correspond to 
They are determined by the initial data 

 If we identify solutions to the constraint with these initial data, 
observables are operators acting on them. 

 A complete set is provided by the observables for Bianchi I and, 
e.g., the operators representing

 
 With reality conditions we obtain (a Hilbert space equivalent to)   
                                  

 Imposing the S1-symmetry we get                                            
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 Conclusions 
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  By combining the loop quantization of Bianchi I (with compact 
sections) and the Fock quantization of the Gowdy model, we have 
constructed a hybrid quantization of these cosmologies in vacuo.

 We have obtained a well-defined constraint operator for the 
Gowdy model, found the solutions to the constraint and proceeded 
to determine the physical states and observables.

 The initial singularity is avoided (due to the loop quantization of 
the zero modes) and we get a no-boundary description.

 The physical Hilbert space is (equivalent to) that of the Fock 
quantization.


