HYBRID QUANTIZATION

OF THE GOWDY
COSMOLOGIES

LQC Workshop. October 2008.



= The loop quantization of homogeneous cosmological models has
been studied recently. Besides, a satisfactory Fock quantization of
inhomogeneous cosmologies has been achieved: the Gowdy model.

" The Gowdy T3 model is a natural test bed to incorporate
inhomogeneities in Loop Quantum Cosmology.

® The simplest possibility 1s a hybrid quantization.
® The initial singularity appears in the homogeneous solutions of the
model (Bianchi I). How does the inclusion of inhomogeneities

affect 1ts quantum mechanical resolution?

® Does the loop quantization of the zero modes suffice to resolve the
singularity? (Different from the “BKL” approach).

® Questions in mind are internal time, semiclassical behavior,
validity of the Fock quantization, perturbative approaches...
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Classical system

® We consider Gowdy T3 cosmologies with linear polarization.

= The classical metric is (with 0,0 ,5€S"):

ds'=e" =g +d )+ " ' d g*+e*" " d 5
o(t,0)=c+pInt+), [c,Jq(mt)sin(mO+e,)+d,No(mt)sin(mo+e,)].
® Generically, =0 1s a curvature singularity.

® Fixing the gauge, except for the zero modes of the O-diffeos and
scalar constraints, we get with a suitable field parametrization:

, e-mm , eam
do’ |+ do +
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N is homogeneous and & has no zero mode.
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hoice of variables

® The zero modes can be viewed as the degrees of freedom of a
Bianchi I model.

® [n a diagonal gauge, the corresponding Ashtekar variables are

~Biva__ Pi ca BN C i i . i
(E )i=4n26i, (A )“:E(S“’ [c,pj]—SnGy(Sj.

= Expand the field and its momentum in Fourier modes, (&, Py ),
and introduce the variables:

. |m|§m—|—iK2P? 4G
a,,a,), a,= , K=4{—.
(a,,a,) 2K =

m The complex structure that is naturally associated with these
variables determines a Fock space F°.

® This i1s the unique Fock quantization with a unitary dynamics
and a natural implementation of the remaining gauge group.

LQC Workshop. Guillermo A. Mena Marugén (P4)




’ Remaining constraints

} = The diffeomorphisms constraint generates S! translations.

It does not depend on the zero modes.

m Scalar constraint: Bianchi I plus the inhomogeneous Hamiltonian.

Clp102p2+clp1€3p3+62p203p3
\/|p1p2p3|
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Bianchi I: representation

m Wecall {x'|={6,0,8]. The Hilbert space H, is the tensor
product of H\)=L*(R,d u%,, ).

= We implement (a possibly modified version of) the proposal chosen

by Chiou ( ﬁ}loc | p ,|) We change to the v, -basis.
m Using the standard methods of LQC:

o —

1

Vi

)= bl

e

[sm (H,c sgn (p,)+sgn(p,)sin(f,c )]«/|p], a=(8@ﬂyli)_”z

m (% annihilates all the “zero volume” states: states in the basis
Hv1>®’v2>®‘v3>] with any v,=0. These states get decoupled.

In this sense, the singularity is resolved.
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Bianchi I: Densitized constraint

m Restricting to the cylindrical functions and the kinematical Hilbert
space H ;{; without zero volume states, we densitize the constraint:

-1/2 -1/2
= 1 -~ 1 A A A A A A
C,= C, =2(A, A+ A A+ AL A,
V|p) P Py V|p1 Py Py
/A\] V1>=_7Ti)’]; f+<V1)|V1+2>_f—<V1>|V1_2>)’
1 1/3 1 1/3|-1/2
1.v)=g(v£2)[sgnlv 2 sgn(v) g0), g=li+3 —1-1

n fL(v)) (f_(Vz)) vanishes in [—2,0] ([0,2]). Then, A, does not
mix the semilattices Ziel.'=[i(e[+2n), nEIN}, e, € (0,2].

The corresponding subspaces H (ilg, provide superselection sectors.

® [n this sense, the constraint equation encodes a no-boundary.
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Spectrum and eigenfunctions of A,

0
ov,
= A, (with domain the span of the v,-states in the semilattice -2 ie,)
1s essentially self-adjoint and has absolutely continuous spectrum.

= The WDW analog of /A\I wouldbe 12miyGv,
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Bianchi 1: Physical states

AN
~

: E,=2(A, At A A+ ALA,).

Since A ; are observables and we know their associated resolution
of the 1dentity, it is straightforward to solve the constraint.

® The same results can be obtained with group averaging. Physical
states have the form

@ (v, v,, "3)=JW_OO dA, f_oo dA,¢(A,, ?\3)ei‘l[z\](vl)ei‘;(%)eZ(vg,)
with the Hilbert structure %€ H" := L*(R*, d A,d A,/|A,+A,|) and
A A ]==2,A,/(A,+4,).

A A

m A complete set of observables is given by A,, A;, v,
for any given section v .

v)? V3
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 Hybrid Gowdy model

® The kinematical Hilbert space is H ®F :

® The inhomogeneous part @ of the constraint annihilates also the
zero volume states. Since these decouple, we can restrict ourselves
to H,,:=H,,®F".

We then arrive at the densitized constraint:

A ﬁ A A 2
C.=——B_¢ IE== A +32m(p |HE,
G yz 3 li yz /_|p1| Int | 1|
HS,.. =2 ﬁ(za;amm;aimmma_m), A=) mlala,.

= We have represented the variables ¢’ p I by A like 1n Bianchi .
Then, A2 and A are observables, but A 1s not.
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Densitized constraint

® [f we view the constraint as an evolution equation, p, plays the
role of internal time.

= Superselection: we restrict to H (Ell) ® H g) ® H (E':’) ® F*.
= We define C, with domain the span of

[‘V1>®|v2>®‘v3>®|{nm> —|v1,v2,v3,{ }> v,e,?

{nm}>EF§}.

The operator 1s well-defined and symmetric.
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Eigenvalue equation: formal solutions

= The (complex) eigenvalue equation for é’ leads to

(‘I’ Vv, V,, Vsl n }> py I (¥|v,. vy, vs(n,}), pEC.
Substituting (‘I"=Zv1 fledAsz3<vl|®<eAi®<eA ®(‘I’[v1’)\2’2\3”,

we get (‘I’[el+2M]‘{nm}>=(‘I’[el]‘Z{ri}u{sj}eow) [H,,l_F(El-I-Z ri+2)]
XP[HS‘jI:Ii[€1+2Sj]H{n

A

o

f- (Vl) Ax ]
F(v,):= H:[v,]:=
: f+( ) Pt 2"(A2+A3)f+("1)
(Az As)z 2 £ 5/6 3 213 A E
X p+2A2A3_ y b ( )Hlnter 2 3 Tt y|V1| HO :

O (M) is the set of paths from 0 to M with jumps of 1 or 2 steps.
Ls j} are the points followed by a jump of 1 step.

P denotes path ordering.
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Observables and physical states

® Solutions to the constraint correspond to p=0.
They are determined by the initial data (\[/ [61]|-

® [f we identify solutions to the constraint with these initial data,
observables are operators acting on them.

A complete set is provided by the observables for Bianchi I and,
e.g., the operators representing

{(E +&_,,0&,—iE_,, P " iP]—iP;"|; meN’

m With reality conditions we obtain (a Hilbert space equivalent to)
L*(IR*,d Ayd Ayl A, +A4|) @ FF.

3
phys *

® Imposing the S!-symmetry we get L*(R*,d A, d ?\3/‘2\2+2\ | )J® F

F f,hys is the subspace annihilated by (€, Z

m>0
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Conclusions

= By combining the loop quantization of Bianchi I (with compact
sections) and the Fock quantization of the Gowdy model, we have
constructed a hybrid quantization of these cosmologies in vacuo.

m We have obtained a well-defined constraint operator for the
Gowdy model, found the solutions to the constraint and proceeded
to determine the physical states and observables.

® The initial singularity is avoided (due to the loop quantization of
the zero modes) and we get a no-boundary description.

®m The physical Hilbert space is (equivalent to) that of the Fock
quantization.
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