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The background QFRW: kinematics |

® the homogeneous scalar field 7', and its momentum 7
» the Hilbert space

HSC — LQ(R)7 (¢1|¢2)sc = /dTE(T)@DZ(T)a (1)

R

o the operators

THT) = THT),  #00(T) = “Lom), @

1 dT
® the scale factor ¢ and the extrinsic curvature
o the Hilbert space H,,

# the scale operator a, the corresponding momentum 7, (or other
operators instead)

® The total kinematical Hilbert space

HSC ® ng
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The background QFRW: kinematics Il

More ingredients we need:

# a 3-manifold X

» ahomogeneous and isotropic conformal geometry [¢(?)]
# acompact, closed region >g C X

1 ® a3 is the geometric volume of ¥,

>0

the quantum 3-metric tensor operator on X

77 ® 1 1S the classical

qg = a“q"”’ = a qg%)da:ad:vb (3)

where
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The background QFRW: dynamics 1

® the quantum scalar constraint operator C defined in Hg. ® He::

A

2

]_ —_ —
C = 77 ®a3 + 1® Cy,

(4)

where a3 and 6*; are suitable operators defined in H,,.

® a physical guantum state ¥: an evolution

such that

where

h d A

S Wy = H, Up .
idl " gr =
A /\—1/\
ng — _201_3 Cgr,

(5)

(6)

(7)
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The background QFRW: dynamics 2

® the physical quantum operators
# the scalar field: T' becomes time, and

mr = Hgy
® a
Ty — a°(Tp)
((?LD(TO)\IJ)T _ ei(T—TO)ﬁgrae—i(T—Tg)ﬁgr\IIT 9)

Or in other words, aP (T}))¥ is a solution such that at 7' = Tj it
takes the value aWr, .

# the 3-metric tensor operator

G°(To) = (a°(Tp))? gV, (10)
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The issue of the guantum 4-metric operator

Classically,
ds® = —N2(t)dt2—|—a2(t)qc(£)dquxb,
The K-G equations
dT N
@
Hence
CL3
Ndt = —dT
T
and
CL3
ds? = —(—)2dT? + a%¢\.
T

However, a and 7 = Flgr do not commute. Therefore, a choice of the
ordering is needed In:

ds? = —5&61ﬁ[g;25dT2 + &zqé?))d:vadxb. (11)
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Probing the quantum geometry

Remarkably, that non-uniqueness will not affect the quantum evolution of
our test quantum fields along the quantum FRW spacetime. The evolution
will be derived in the next section in an ambiguity free way and some or-
dering will emerge naturally. In this sense, probing the quantum FRW with
the quantum test fields will bring in more physical information about the

quantum spacetime geometry.
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QFT In curved spacetimes 1

Metric tensor
g = gw/daﬁudaﬁy

Hyperbolic space-time M

e Scalar field
Oy +m*)® = 0 (12)

[ci)(t,x),cﬁ(t’,a;’)] — i(GY

adv

(t,z,t',2") — GY

ret

(t,z,t',2")) (13)
Pt = . (14)

e A quantum state (-)
D(ty, 1) P(tn, xn) — (D(t1,21)...0(tn, zn)) (15)
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QFT in curved spacetimes 2: algebraically

e A — x-algebra generated by the letters

®(f), where fe C&(M) (16)

modulo the relations:
O(afi + f2) = a®(f1) + (f2) (17)
(0 +m?)f) = 0, (18)

[ci>( 1), &( f2)] — / (GI, (t,z,t,2") — G (t, 2, 2') f1(t, 2) fo (', ') dtdzdt
(19)

AN —

(f)* = @(f) (20)

e A quantum state is a linear, positive functional (-) : A — C.
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QFT in curved spacetimes: (0] - |0)

e Ingredients: a family of ("modes")
(O4+m*)u, = 0

labeled by k£ € K (endowed with a measure dk), such that

oTm / dk ug(t, 2)ap(t, 7)) = G
K

adv

(t,z,t',2") — GY

ret

(t,z,t', ")

e The corresponding state () w.r.t. the partitions of {1, ..., 2n} into pairs
(j17 ll)? ceey (]na ln)1 .]z > lz)

0182, )1, 2/)|0) = /de i (1, 2) g (', 2)

([ (t1, 1) D (tan, 220)10) = Y (01D, 2;,)@(ts,, 24,)|0)
1=1
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QFT in FRW: a formulation compatible with LQC

® The background spacetime: M = R x St x St x St

ds® = —N?(t)dt* + a*(t)(dedzt + dax?da? + da’da®)

® afamily of quantum systems ("modes") labeled by k € 2mZ3:

» the Hilbert space H; = L*(R)

» operators: G:¢(qz) = qp(qz),  Prv(qr) = 2

® Hamiltonian A(t) = ot {02 + (a* (k> +aO(t

2a3(t)
» solutionsto L0, = _%HE( Wy
® inour case
s t=T, N(T)=2D

T )

s Hy(T) = g A0} + (@ (DK + a®(T)m*)2)

® Ou(T,z,y,2) = (GXT) + ig"(T)) expikZ + c.c

2 ar)
m?)q:}
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QFT in QFRW: the idea 1

Our goal is the generalization of the quantum mode structure to the
guantum spacetime case. Naively, it is just a — a. However, it is not
that simple and one has to go beyond those heuristic replacements.

Expand the scalar constraint
C(N =1) / B2(Cor(qap, 72°) + (T, 1) + O (6, 75))
20

Around homogeneous isotropic data:

# gravitational part: ¢, = a2qé%) and wgb = Waqé%) :
» the first KG: homogeneous T, wr

» the second KG: ¢, 7y = 0.

Perturbations ¢ f of the trace part of the metric, and of the field 7" and
7w, are assumed to satisfy

/ Vdet qOdf = 0.
>0
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QFT in QFRW: the idea 2

C(1) =COa, 7, Tywr) + Y CP(a,d¢y,0mp) +

ke2r73

+ OB (8Gap, 072, 6T, 0mr,) + C® + . (21)

where C'(©) is the constraint evaluated at the homogeneous isotropic data
with N =1, and

& 1 (a*m* + ak?)¢3) (22)

where we drop ¢
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QFT in QFRW: the idea 3

® In the classical theory, up to the first order

» the constraint C(©) = 0
» the dynamics of each of the modes q;, p;:

dpp
dt

dqy (2)
Gk

{pE7 CI%Q)}

® In the quantum theory however, the dynamics of the quantum FRW
spacetime coupled with the field 71" as well as the time itself, emerge
in the space of solutions to the quantum scalar constraint. Therefore,
to define the dynamics of each quantum mode ¢; interacting with the
guantum background spacetime consistently, we will consider in the
next subsection a guantum theory given by the following part of the
scalar constraint operator

Cc© 4 Cg). (23)
We can ignore the other terms is that approximation, as well as the

scalar constraints given by none-constant 0.V, because different
perturbations do not interact with each other. QFTInfhe expanding quanium spacetime - p-L
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A guantum KG mode in QFRW 1

The kinematical Hilbert space H = Hyc ® Hgr @ Hi

The quantum fields:
Tolel, frolel, 10ael, 191§, 1011 p;

The constraint operator

L1, — B B T B P
C = S#r®a=3®1 + 180, ®1 + S ®a=?@p + ;@ (k*a’a=2+m?a*) g,
states:
# such that

;d—T\IjT = JHZ®1 — 1052 — (k%4 +m2a%) © ¢2 Ur,

where the operator H,, is the gravitational Hamiltonian defined
before.
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A guantum KG mode in QFRW 2

® applying the operator identity and ignoring "..."

1 1 1 1.1 1 1 1 1 1 1
(A+B)2 = As(1+A 2BA 2)2 41 = A+(1+ iA_EBA‘i — .. )A*
(24)
® we derive our generalized Schroedinger equation
d i o .
¥ = 5 (Hy ®1— Hp)Vr, (25)
where
- 1 r—1 ~2 1 - 2
Hp = ngr Q¥pr + 2ng (K*a(a) +m?*B(a ))ng ®qk (26)
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In the interaction picture

d i A .
where
Hy(T) =
1~ . 1 - A A1
SHG' @pp + S Hy” (Ka(a(T) + m*Ba(T))Ha® © 6% (28)
and
a(T) = e_i(T_Tl)ﬁgrdei(T_Tﬂggr, (29)
and
Up = T-T)Hegint (30)
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classical versus guantum background

d i
—i—VUp = H(T)¥
Yar T £
(T oy 107 + (a'(D)k* +a®(T)m?) - 42}
- — 1 _1
" Lipt@lo {1@p2 + (aH D)k +a5(T)m?) @ 2} oy ® @1,
 U;

® < H; s a state of the quantum k-mode
® € 'Hg ®Hji Is a state of the quantum geometry and the k-mode

® 71
# Is a constant real number
® & = H,,, operator defined in H,,,
Y [ﬁgr, a] # 0
® T+ a(T)
# is a given real valued function,
# Is the given operator valued function

ar = exp(—i(T —T1)Hg) a exp(e(T — T1)Hgy ),
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The comparizon in the Heisenberg picture

d

=U(T) = —iH(T)U(T)
A — AY(T) = UM YAU(T)

d A2y = GIEFH AH

A (D) = i[H(T), AN(T)]
(GL{PUAT) 4 (aM (DR + aS(T)m?)gH (1)}

HX(T) = i4ll-2(T) @ 10

{1@p*(T) + (@"(T)k* + " (T)ym?) ® ¢ *(T) }
\ ol =2(T) ® 1

The key difference is:

® UT) ta(TUT) = a(T)
® AM(T) = U(T)'a(T)U(T)
® The advantage [AY, BY] =

A, BJ"
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Admitting finitely many k-modes

cO 4+ 02)
states: T'— Ur € Hy ® H,;l R ... R H,;n.

the interaction picture

d int 2 - int
YT = _]?LZHEZ-(T)\I}Ta (31)

a price: the modes do know about each other
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The semiclassical quantum geometry

The semiclassical approximation:
it
Ut = Uao® Vg,
\Ijgr,O S ng

<> — (\I’gr,0| ) \I’gr,O)gr

d R

E\D’fT — <H~>\IJ,—§»’T (32)
2 L1y, A3 .~ A3 ALY
(Hp) = §(<7TT1>P% + (k2<7TT a(T)47TT >+m2<7TT a(T)67rT >)(1,%)
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Emergence of the classical geometry?

Is there a classical geometry which gives the same result? Recall:
ds> = —N*(T)dT? + a(T)*q'?,

: N(T)

HU(T) = soacpy (0 + @ (DR +a*(T)m)i2) 4

In the case of the massless mode, given: (7#') € R and

1

T — (ﬁ;ﬁﬂ(&(T))fr;%) there is unique solution 7" +— «(7") and 7" — N(T')
such that

N _ ooty N(T)a(T) = (aotam)tast). (35)

1 1 1
<7ATT &(T)47ATT2>3 <7TT a(T)67rT2>2 (36

1 > 2 © QFTinthe expanding quantum spacezme -p.2




°

Open problems

understanding the creation anihilation operators:
pp £ ia*gy
time independent vacuum?

accomodating infinitely many modes

QFT in QFRW as the first step in perturbing the full theory aroung
guantum background.

improving the time definition in QFRW
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