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tensor perturbations.

@ To discuss related issues and future directions.
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Coefficients

@ o maintains the same structure in different quantization
schemes, where ¢ and ¢, are robust in the choice of the
parameters.

@ ‘Natural’ values (dictated by the form of the Hamiltonian or
other considerations)

r=1, n=1/2

c=6, a. =0, aq:\@, goa =3.
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ds* = —dt* + a*(6; + hyj)dx'dy’

Triad and connection separated into a FRW background and an
inhomogeneous perturbation:

Ef =60+ 0E!, AL = b+ (6T} +10K)
Then
{ 11
O} = —sa’hi, 0K, =3 (aaTh? + ;h?>

and ' .
{0K,(x),0E! (y)} = 87G38,5i5(x,y)
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Mukhanov equation

Conformal time 7 = [ 4.
Only inverse-volume corrections:

dlno

2
h 2 - —
8Tk+H< dlna

) O-hy + o2kPh, = 0.

We solve it in large- and small-volume regimes separately.
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Background

a=rT", = — =aH =
a

Ora P
—
Issue here... discussion later.
First slow-roll parameter
H 1
Inflation occurs for p < —1 (de Sitter: p = —1), superinflation
when —1 < p < 0.
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Near-Planckian regime: Solution

@ Mukhanov variable w; = ahy, time variable
z= [dra=7a/(1+ pqa)

@ Pwi + (k2 — 4”42—2‘1> wir =0, where v =1/2 — p/(1 4 pqa)
@ Solution: wy = Clx/—sz,(,l)(—kz) + sz/—szl(,z)(—kz)

@ (, = 0 (advancing plane wave at small scales)

@ Large- and short-wavelength limits of the solution (v > 0)

2T
Wi~ —iCIW(V)(_kZ)l/ZVa k| < 1,

2 ' us us
we ~ C \/>e—z(kz+2l/+4) ’ ]kz\>>1.
T
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Near-Planckian regime: Normalization

Constant C; is determined by choosing the Bunch—Davis
vacuum, wy ~ e~ /\/2k.
Operator iy, = aly = wiax + wia) obeys

[ftkl, 87—121(2] = 3271'612311'04(5(](] y kz) .

Wronskian:
wiO-wi — wid,wy = (32103 cv.

Plugging in the short-scale solution, one gets |C;| = |/872¢3, /k.
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Horizon crossing defined when perturbations freeze:

421 H 1
ko= fiog, - L

Well defined only if p > 1/(1 — q,). Stronger condition

p > —1/q, > —1 (z flows along the same direction at 7, modes
exit horizon)

Tensor spectrum:

A2 = L=_— ’
T 100 — 200m2a2 ;0”’“”’ s,
2
x iz o k2U4p+raa)/(14pga)
«

Tensor spectral index:

_ dnAZ _ 2(e+qa)
T = Tk |, T etga|
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Stochastic background of primordial gravitational

waves

I dpgw 242
= x T(k)°A
gw Pcritdlnf ( ) T
2
nr~ ! 2.29 x 1014M
lnf lnfo r

@ Pulsar timing, LIGO, LISA, BBN place strong constraints.

@ Taking upper bound r < 0.30, from pulsar timing ny < 0.79,
from BBN ny < 0.15.

@ If r ~ 1078, still these bounds are ny < 1.
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Near-Planckian regime: Excluded?

@ Quasi-de Sitter limit (e ~ 0): nr = 2¢g/(ga — 1) > 12/5.
Strong blue tilt.

@ Deep superacceleration (¢ < —gq,): ny ~ 2. Strong blue tilt.

@ Near-Planckian phase might have occurred only at very
early times (unobservably large scales) and for a short
period.

@ Scale-invariant or red-tilted tensor spectrum achieved in
the interval —1/g, <p < —1/(qa + 1), but could spoil scale
invariance of scalar spectrum.

@ 1: r could be fine tuned to be small but scalar sector not
available.

@ 2: Anomaly cancellation does not happen in scalar sector
in this regime, which may be a sign that perturbation
theory fails to converge.

@ 3: Close to the bounce, power-law evolution may not be a
good approximation. However, a =~ const.
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Quasi-classical regime: Solution

Mukhanov equation:

Pwi+cH(a— 10w+ {(2a — D>+ H[e =2 —c(a—1)]}wyi = 0.

Solution perturbative in a. (a. # 0; natural choice trivial):

W = W/EO> + Osz/E1>

2w + [+ H2 (e —2)] w0 =
8$w,(<1) + [k + H* (e — 2)] wkl) +r(r)=0,

0= () o+ e -0l
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Quasi-classical regime: Asymptotic solutions

At large scales:

‘wk<<7.¢ =C (14 a.Cy)r? ‘

At small scales:

(0) _ 16”%1 —ikT
Wisn = \/Te

(0) I +a ikt <\7/—§>

WisH = W
> k>H Cp—l
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Quasi-classical regime: Normalization

@ Horizon crossing at k, = H,/1 — 117
°

[167m03 ek
C](k) = kPl Tp EC]kp 172
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Quasi-classical regime: Normalization

@ Horizon crossing at k, = H,/1 — 117
°

Cz(k) _ lk*T* (\/Z) Eéqu’

cp—1\ 77

@ Correction term decays in time.
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L B

T= Em(l + 0p1)

where

5P1 = a% ‘ 62 | 2k2cp

Tensor index:

—2(e + copy)

nr ~2(1 +p+ cpdp) = .
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Conclusions

@ Near-Planckian regime possibly disfavoured.
@ However, there are caveats to be addressed.

@ Only nonperturbative formalisms (covariant, N, separate
universe, etc.) could be trusted (also relevant for anomaly
issue).

@ Quasi-classical result reliable, but scalar sector still under
inspection.
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