Effective equations

Martin Bojowald

The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA

Liv. Rev. Rel. 11 (2008) 4

What is Loop Quantum Cosmology?

PENNSTATE

Models full quantizations of gravity by loop methods, tries to analyze physical effects.

Exploiting several simplifying assumptions, *complete control* can sometimes be reached all the way to the physical Hilbert space.

Different types of assumptions, e.g. *symmetry* (homogeneity trivializes anomaly problem) or special *matter ingredients* (free massless scalar provides time, leads to solvability).

What is Loop Quantum Cosmology?

Models full quantizations of gravity by loop methods, tries to analyze physical effects.

Exploiting several simplifying assumptions, *complete control* can sometimes be reached all the way to the physical Hilbert space.

Different types of assumptions, e.g. *symmetry* (homogeneity trivializes anomaly problem) or special *matter ingredients* (free massless scalar provides time, leads to solvability).

Based on strong reductions, specific *"results cannot really be trusted."* [J. Lewandowski: ILQG seminar]

To *model full theory reliably*, avoid ad-hoc choices and keep all required freedom in

- → equations: matter content, refinement scheme, and
- → initial values: squeezed states, mixed states, potentially highly quantum states

Tool: effective equations.

PENNSTATE

Holonomies

PENNSTATE

Choose coordinates, consider *co-moving region of coordinate volume* V_0 . Expands/contracts by $V(t) = a(t)^3 V_0$. Dynamics of a(t) from Friedmann equation for isotropic components \tilde{c} and \tilde{p} of connection $A_a^i = \tilde{c} \delta_a^i$ and densitized triad $E_i^a = \tilde{p} \delta_i^a$. Poisson bracket V_0 -independent for rescaled variables $c = V_0^{1/3} \tilde{c}, \ p = V_0^{2/3} \tilde{p}$.

Holonomies

PENNSTATE

Choose coordinates, consider *co-moving region of coordinate volume* V_0 . Expands/contracts by $V(t) = a(t)^3 V_0$. Dynamics of a(t) from Friedmann equation for isotropic components \tilde{c} and \tilde{p} of connection $A_a^i = \tilde{c} \delta_a^i$ and densitized triad $E_i^a = \tilde{p} \delta_i^a$. Poisson bracket V_0 -independent for rescaled variables $c = V_0^{1/3} \tilde{c}, p = V_0^{2/3} \tilde{p}$.

Basic ingredient to quantize curvature: "holonomies"

$$h = e^{i\ell_0 \tilde{c}} = e^{i\ell_0 c/V_0^{1/3}} = e^{ic/\mathcal{N}^{1/3}} = e^{i\mu c}$$

along straight edges of coordinate length ℓ_0 . If edges arranged homogeneously to form graph in region of size V_0 , there are $\mathcal{N} = V_0/\ell_0^3$ vertices.

By construction: N coordinate independent, $h V_0$ -independent. Vertex density N/a^3V_0 coordinate and V_0 -independent.

Lattice refinement

Constant co-moving ℓ_0 : lattice is expanded by a(t) to potentially macroscopic spacing. Avoid discreteness effects at large volume if new vertices created dynamically: \mathcal{N} grows while ℓ_0 shrinks.

Constant co-moving ℓ_0 : lattice is expanded by a(t) to potentially macroscopic spacing. Avoid discreteness effects at large volume if new vertices created dynamically: \mathcal{N} grows while ℓ_0 shrinks.

Also for flux values $\ell_0^2 a^2 = \ell_0^2 p / V_0^{2/3} = p / \mathcal{N}^{2/3}$ (inverse triad). holonomy corrections significant for $\dot{a}/N > k_* := (\mathcal{N}/V_0)^{1/3}$ inverse triad corrections significant for $a < a_* := (\mathcal{N}/V_0)^{1/3} \ell_P$

Holonomy corrections decreasing for larger N, inverse triad corrections increasing: change balance of corrections just by refining.

Constant co-moving ℓ_0 : lattice is expanded by a(t) to potentially macroscopic spacing. Avoid discreteness effects at large volume if new vertices created dynamically: \mathcal{N} grows while ℓ_0 shrinks.

Also for flux values $\ell_0^2 a^2 = \ell_0^2 p / V_0^{2/3} = p / \mathcal{N}^{2/3}$ (inverse triad). holonomy corrections significant for $\dot{a}/N > k_* := (\mathcal{N}/V_0)^{1/3}$ inverse triad corrections significant for $a < a_* := (\mathcal{N}/V_0)^{1/3} \ell_P$

Holonomy corrections decreasing for larger \mathcal{N} , inverse triad corrections increasing: change balance of corrections just by refining.

Power-law: $\mathcal{N} = \mathcal{N}_0 a^{-6x}$, 0 < x < -1/2 (limiting case $\mathcal{N} \propto V$).

 \mathcal{N}_0 may depend non-trivially on V_0 and coordinates: coordinate dependent scale factor used. If this is ignored, $\mathcal{N} \propto V_0 a^3$ and thus x = -1/2 ($\bar{\mu}$) is the only possibility. Uniqueness "proof" flawed: possibility of non-trivial coordinate dependence of \mathcal{N}_0 is excluded by hand.

For given refinement, Hamiltonian constraint to be quantized:

$$-\mathcal{N}^{2/3}\sin^2\left(\frac{c}{\mathcal{N}^{1/3}}\right)\sqrt{|p|} + \frac{8\pi G}{3}\left(\frac{p_{\phi}^2}{2|p|^{2/3}} + |p|^{2/3}W(\phi)\right) = 0$$

Quantization can be analyzed by *effective equations* which in general *do not agree* with the simple modified Hamiltonian containing $\mathcal{N}^{2/3} \sin^2(c/\mathcal{N}^{1/3})$ instead of the classical c^2 .

For given refinement, Hamiltonian constraint to be quantized:

$$-\mathcal{N}^{2/3}\sin^2\left(\frac{c}{\mathcal{N}^{1/3}}\right)\sqrt{|p|} + \frac{8\pi G}{3}\left(\frac{p_{\phi}^2}{2|p|^{2/3}} + |p|^{2/3}W(\phi)\right) = 0$$

Quantization can be analyzed by *effective equations* which in general *do not agree* with the simple modified Hamiltonian containing $\mathcal{N}^{2/3} \sin^2(c/\mathcal{N}^{1/3})$ instead of the classical c^2 .

Ineffective equation: simply use classical modification. In general amounts only to *tree level, no quantum corrections.*

It is the (almost) complete effective equation for the *free theory* $W(\phi) = 0$, which represents a *solvable, harmonic system:* no loop corrections, no quantum back-reaction.

Does not generalize to $W(\phi) \neq 0$, just as the effective potential of the harmonic oscillator (no quantum corrections) does not generalize to anharmonic systems.

Harmonic cosmology

Instead: $\langle \hat{C} \rangle = C_Q(\langle \widehat{e^{ic}} \rangle, \langle \hat{p} \rangle, \Delta e^{ic}, \Delta p, C_{e^{ic}p}, \ldots)$ as *effective constraint;* see A. Tsobanjan's talk. Complicated system, but can be deparameterized first to realize solvability in free case.

Instead: $\langle \hat{C} \rangle = C_Q(\langle \widehat{e^{ic}} \rangle, \langle \hat{p} \rangle, \Delta e^{ic}, \Delta p, C_{e^{ic}p}, \ldots)$ as *effective constraint;* see A. Tsobanjan's talk. Complicated system, but can be deparameterized first to realize solvability in free case.

Specific factor ordering, ignoring factors: $p_{\phi} = \pm |\text{Im}J|$ where $J = p^{1-x} \exp(ip^x c)$. With $V = p^{1-x}$: linear algebra

$$[\hat{V}, \hat{J}] = \hbar \hat{J} \quad , \quad [\hat{V}, \hat{J}^{\dagger}] = -\hbar \hat{J}^{\dagger} \quad , \quad [\hat{J}, \hat{J}^{\dagger}] = -2\hbar \hat{V} - \hbar^2$$

With "linear" Hamiltonian, *solvability* is implied:

$$\begin{aligned} \frac{\mathrm{d}\langle\hat{V}\rangle}{\mathrm{d}\phi} &= \frac{\langle[\hat{V},\hat{H}]\rangle}{i\hbar} = -\frac{1}{2}(\langle\hat{J}\rangle + \langle\hat{J}^{\dagger}\rangle)\\ \frac{\mathrm{d}\langle\hat{J}\rangle}{\mathrm{d}\phi} &= \frac{\langle[\hat{J},\hat{H}]\rangle}{i\hbar} = -\frac{1}{2}(\langle\hat{V}\rangle + \hbar) = \frac{\mathrm{d}\langle\hat{J}^{\dagger}\rangle}{\mathrm{d}\phi} \end{aligned}$$

Positivity

 $p_{\phi} = \pm |\text{Im}J|$ linear if ImJ is positive or negative definite.

Positive frequency: take $p_{\phi} = \text{Im}J =: H$ and start with initial moments of a state supported only on the positive part of spec*H*. Since *H* preserved during ϕ -evolution, support on spec*H* remains positive.

Due to linearity, there is *no quantum back-reaction* in evolution; positivity only provides restrictions of (high order) initial moments.

Positivity

 $p_{\phi} = \pm |\text{Im}J|$ linear if ImJ is positive or negative definite.

Positive frequency: take $p_{\phi} = \text{Im}J =: H$ and start with initial moments of a state supported only on the positive part of spec*H*. Since *H* preserved during ϕ -evolution, support on spec*H* remains positive.

Due to linearity, there is *no quantum back-reaction* in evolution; positivity only provides restrictions of (high order) initial moments.

Alternatively, take $p_{\phi} = -H$ and a state supported only on the negative part of spec*H*.

Superpositions of $\pm H$ states allowed, but moments of whole superposition not as interesting as moments of individual contributions.

States through a bounce

Equations of motion for expectation values decouple:

$$\frac{\mathrm{d}\langle\hat{V}\rangle}{\mathrm{d}\phi} = \frac{\langle[\hat{V},\hat{H}]\rangle}{i\hbar} = -\frac{1}{2}(\langle\hat{J}\rangle + \langle\hat{J}^{\dagger}\rangle)$$
$$\frac{\mathrm{d}\langle\hat{J}\rangle}{\mathrm{d}\phi} = \frac{\langle[\hat{J},\hat{H}]\rangle}{i\hbar} = -\frac{1}{2}(\langle\hat{V}\rangle + \hbar) = \frac{\mathrm{d}\langle\hat{J}^{\dagger}\rangle}{\mathrm{d}\phi}$$

with general solution

PENNSTATE

$$\langle \hat{V} \rangle (\phi) = \frac{1}{2} (Ae^{-\phi} + Be^{\phi}) - \frac{1}{2}\hbar \langle \hat{J} \rangle (\phi) = \frac{1}{2} (Ae^{-\phi} - Be^{\phi}) + iH$$

"Bounce" since $|\langle \hat{V} \rangle| \to \infty$ for $\phi \to \pm \infty$, but *could enter deep quantum regime* if AB < 0; solvable model would break down.

Reality condition

PENNSTATE

Classical: $J\bar{J} = V^2$. Quantum: $\hat{J}\hat{J}^{\dagger} = \hat{V}^2$. Related to *physical inner product*: $\exp(iP)$ becomes unitary operator. Expectation values: $|\langle \hat{J} \rangle|^2 - (\langle \hat{V} \rangle + \frac{1}{2}\hbar)^2 = G^{VV} - G^{J\bar{J}} + \frac{1}{4}\hbar^2$. Implies $AB = H^2 + O(\hbar)$, *bouncing* solution ($e^{2\delta} = B/A$) $\langle \hat{V} \rangle (\phi) = H \cosh(\phi - \delta)$, $\langle \hat{J} \rangle (\phi) = -H(\sinh(\phi - \delta) - i)$

$$\rho = \frac{p_{\phi}^2}{2p^3} = \frac{H^2}{2V^{3/(1-x)}}$$

 \rightarrow energy density bounded above independently of p_{ϕ} for x = -1/2, but not for $x \neq -1/2$.

Reality condition

PENNSTATE

Classical: $J\bar{J} = V^2$. Quantum: $\hat{J}\hat{J}^{\dagger} = \hat{V}^2$. Related to *physical inner product*: $\exp(iP)$ becomes unitary operator. Expectation values: $|\langle \hat{J} \rangle|^2 - (\langle \hat{V} \rangle + \frac{1}{2}\hbar)^2 = G^{VV} - G^{J\bar{J}} + \frac{1}{4}\hbar^2$. Implies $AB = H^2 + O(\hbar)$, *bouncing* solution ($e^{2\delta} = B/A$) $\langle \hat{V} \rangle (\phi) = H \cosh(\phi - \delta)$, $\langle \hat{J} \rangle (\phi) = -H(\sinh(\phi - \delta) - i)$

Uncertainties (e.g. $G^{VV} = \langle \hat{V}^2 \rangle - \langle \hat{V} \rangle^2$): $\dot{G}^{VV} = -G^{VJ} - G^{V\bar{J}} , \quad \dot{G}^{JJ} = -2G^{VJ} , \quad \dot{G}^{\bar{J}\bar{J}} = -2G^{V\bar{J}}$ $\dot{G}^{VJ} = -\frac{1}{2}G^{JJ} - \frac{1}{2}G^{J\bar{J}} - G^{VV} , \quad \dot{G}^{V\bar{J}} = -\frac{1}{2}G^{\bar{J}\bar{J}} - \frac{1}{2}G^{J\bar{J}} - G^{VV}$ $\dot{G}^{J\bar{J}} = -G^{VJ} - G^{V\bar{J}}$

 $\longrightarrow \text{Reality preserved: } \dot{G}^{VV} - \dot{G}^{J\bar{J}} = 0. \\ \longrightarrow \text{Near saturation, } (\Delta V)^2 = G^{VV} \approx \hbar H \cosh(2(\phi - \delta_2)). \\ \text{In general, } \delta_2 \neq \delta \text{: asymmetric fluctuations.}$

On the momentous role of moments

Fluctuations and higher moments dynamical, in general back-react on expectation values. Affect results of effective equations and must be analyzed properly.

Example: Compute $\langle \hat{C} \rangle$ in Gaussian state assumed to be realized at all times. [J. Willis; V. Taveras; Y. Ding, Y. Ma, J. Yang] Gives ineffective constraint with $\sin^2(c/\mathcal{N}^{1/3})$ modification, plus corrections of an order given by the (possibly phase-space dependent) variance of the state. Assume: $\Delta V \propto V^r$ for some parameter r. Recollapse for r = 0. [Y. Ding, Y. Ma, J. Yang: 0808.0990]

On the momentous role of moments

Fluctuations and higher moments dynamical, in general back-react on expectation values. Affect results of effective equations and must be analyzed properly.

Example: Compute $\langle \hat{C} \rangle$ in Gaussian state assumed to be realized at all times. [J. Willis; V. Taveras; Y. Ding, Y. Ma, J. Yang] Gives ineffective constraint with $\sin^2(c/\mathcal{N}^{1/3})$ modification, plus corrections of an order given by the (possibly phase-space dependent) variance of the state. Assume: $\Delta V \propto V^r$ for some parameter r. Recollapse for r = 0. [Y. Ding, Y. Ma, J. Yang: 0808.0990]

In this scheme only weak control over state, but dynamics of ΔV must be determined in quantum theory. Equation of motion for moments: $(\Delta V)/V \approx \text{const}$, thus r = 1 and no recollapse (or other large-volume effect) happens.

Lest the universe forgets

Dynamical coherent states:

$$D := \left| \lim_{\phi \to -\infty} \frac{G^{VV}}{\langle \hat{V} \rangle^2} - \lim_{\phi \to \infty} \frac{G^{VV}}{\langle \hat{V} \rangle^2} \right|$$
$$= 4 \frac{H}{A} \sqrt{\left(1 - \frac{H^2}{A^2} + \frac{1}{4} \frac{\hbar^2}{A^2} \right) \frac{(\Delta H)^2}{A^2} - \frac{1}{4} \frac{\hbar^2}{A^2} + \left(\frac{H^2}{A^2} - 1\right) \frac{(\Delta H)^4}{A^4}}{A^4}}$$

of order fluctuations squared.

Lest the universe forgets

Dynamical coherent states:

$$D := \left| \lim_{\phi \to -\infty} \frac{G^{VV}}{\langle \hat{V} \rangle^2} - \lim_{\phi \to \infty} \frac{G^{VV}}{\langle \hat{V} \rangle^2} \right|$$
$$= 4 \frac{H}{A} \sqrt{\left(1 - \frac{H^2}{A^2} + \frac{1}{4} \frac{\hbar^2}{A^2} \right) \frac{(\Delta H)^2}{A^2} - \frac{1}{4} \frac{\hbar^2}{A^2} + \left(\frac{H^2}{A^2} - 1 \right) \frac{(\Delta H)^4}{A^4}}{A^4}}$$

of order fluctuations squared. Compare with [Corichi, Singh]

 $D \le 8\beta\epsilon \sim 8\Delta P/P$

right hand side linear in relative fluctuations.

Example: $\beta \epsilon_+ \approx \alpha_2 (\Delta V/V)_+ \approx \sqrt{\alpha_2} 10^{-57}$, thus $D \leq \sqrt{\alpha_2} 10^{-57}$.

Lest the universe forgets

Dynamical coherent states:

$$D := \left| \lim_{\phi \to -\infty} \frac{G^{VV}}{\langle \hat{V} \rangle^2} - \lim_{\phi \to \infty} \frac{G^{VV}}{\langle \hat{V} \rangle^2} \right|$$
$$= 4 \frac{H}{A} \sqrt{\left(1 - \frac{H^2}{A^2} + \frac{1}{4} \frac{\hbar^2}{A^2} \right) \frac{(\Delta H)^2}{A^2} - \frac{1}{4} \frac{\hbar^2}{A^2} + \left(\frac{H^2}{A^2} - 1 \right) \frac{(\Delta H)^4}{A^4}}{A^4}}$$

of order fluctuations squared. Compare with [Corichi, Singh]

 $D \le 8\beta\epsilon \sim 8\Delta P/P$

right hand side linear in relative fluctuations.

$$\begin{split} & \text{Example: } \beta \epsilon_{+} \approx \alpha_{2} (\Delta V/V)_{+} \approx \sqrt{\alpha_{2}} 10^{-57} \text{, thus } D \leq \sqrt{\alpha_{2}} 10^{-57} \text{.} \\ & (\Delta V/V)_{-}^{2} \leq \sqrt{\alpha_{2}} 10^{-57} + (\Delta V/V)_{+}^{2} \approx \sqrt{\alpha_{2}} 10^{-57} \text{, thus} \\ & (\Delta V/V)_{-} \approx \alpha_{2}^{1/4} 10^{-28} \approx \alpha_{2}^{3/4} 10^{28} (\Delta V/V)_{+} & \text{["(almost) total recall"]} \end{split}$$

Asymmetry of fluctuations before and after the bounce extremely sensitive to initial values (A, H, ΔH). For different values of $H = \langle \hat{H} \rangle$, steepness increasing:

Perturbing harmonic cosmology

Deviations from free model imply quantum back reaction.

 \rightarrow Cosmological constant Λ : Hamiltonian still preserved, no positivity problem, expand Hamiltonian around free model. If $\Lambda < 0$, quantum back-reaction not relevant at large volume: semiclassicality preserved over long times; similar if positive spatial curvature. *Cyclic models,* but fluctuations increase over several cycles: $dG^{VV}/d\phi \sim VG^{VP}$ [MB, R. Tavakol]

Deviations from free model imply quantum back reaction.

 \longrightarrow Cosmological constant Λ : Hamiltonian still preserved, no positivity problem, expand Hamiltonian around free model. If $\Lambda < 0$, quantum back-reaction not relevant at large volume: semiclassicality preserved over long times; similar if positive spatial curvature. *Cyclic models,* but fluctuations increase over several cycles: $\mathrm{d}G^{VV}/\mathrm{d}\phi \sim VG^{VP}$ [MB, R. Tavakol]

For $\Lambda > 0$, some moments diverge where $\langle \hat{V} \rangle$ diverges: *quantum* back-reaction essential, $\sin^2 c$ not sufficient. "Recollapses"?

 \rightarrow Big rip singularities: ineffective equation singular. [T. Cailleteau, A. Cardoso, K. Vandersloot, D. Wands] Asymptotes to V = const, $\Delta \phi$ large.

 $\longrightarrow W(\phi) \neq 0$: time-dependent Hamiltonian, not preserved. Quantum back-reaction especially of correlations affects bounce condition. (Possibly other corrections to ensure positivity.)

Kinetic-dominated quantum Friedmann eq.

PENNSTATE

$$[x = -1/2]$$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\rho \left(1 - \frac{\rho_Q}{\rho_{\text{crit}}}\right) \pm \frac{1}{2}\sqrt{1 - \frac{\rho_Q}{\rho_{\text{crit}}}}\eta(\rho - P) + \frac{(\rho - P)^2}{(\rho + P)^2}\eta^2\right)$$

where P is pressure and η parameterizes quantum correlations,

$$\rho_Q := \rho + \epsilon_0 \rho_{\text{crit}} + (\rho - P) \sum_{k=0}^{\infty} \epsilon_{k+1} (\rho - P)^k / (\rho + P)^k$$

with fluctuation parameters ϵ_k ; $\rho_{crit} = 3/8\pi G\mu^2$ with scale μ .

Kinetic-dominated quantum Friedmann eq.

PENNSTATE

$$[x = -1/2]$$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\rho \left(1 - \frac{\rho_Q}{\rho_{\text{crit}}}\right) \pm \frac{1}{2}\sqrt{1 - \frac{\rho_Q}{\rho_{\text{crit}}}}\eta(\rho - P) + \frac{(\rho - P)^2}{(\rho + P)^2}\eta^2\right)$$

where P is pressure and η parameterizes quantum correlations,

$$\rho_Q := \rho + \epsilon_0 \rho_{\text{crit}} + (\rho - P) \sum_{k=0}^{\infty} \epsilon_{k+1} (\rho - P)^k / (\rho + P)^k$$

with fluctuation parameters ϵ_k ; $\rho_{crit} = 3/8\pi G\mu^2$ with scale μ .

Simple behavior if $\rho = P$ (free, massless scalar): bounSingh. [P. Singh, PRD 73 (2006) 063508] Also if $\eta = 0$ when $\rho_Q = \rho_{crit}$ (no correlations).

For $x \neq -1/2$, bounce density depends on initial values, but also on x and \mathcal{N}_0 of refinement scheme (even in free case).

Lewandowski doctrine

Specific numbers (e.g. bounce density, growth of fluctuations over many cycles based on special initial state) are *parameter dependent* (refinement, class of states).

But general parameter-freedom, e.g. x combined with \mathcal{N}_0 can be retained and is already constrained by phenomenological [W. Nelson, M. Sakellariadou, G. Hossain, G. Calcagni] as well as stability considerations in anisotropic models [MB, D. Cartin, G. Khanna].

Specific numbers (e.g. bounce density, growth of fluctuations over many cycles based on special initial state) are *parameter dependent* (refinement, class of states).

But general parameter-freedom, e.g. x combined with \mathcal{N}_0 can be retained and is already constrained by phenomenological [W. Nelson, M. Sakellariadou, G. Hossain, G. Calcagni] as well as stability considerations in anisotropic models [MB, D. Cartin, G. Khanna].

Effective equations allow an analysis of the behavior of generic states: squeezed, mixed, possibly highly quantum near the big bang.

Rather than specific but too special values, "negative" statements can be derived in the form of *limitations*. Reliable if they even occur in highly simplified (possibly solvable) models.