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What is Loop Quantum Cosmology?

Models full quantizations of gravity by loop methods, tries to
analyze physical effects.

Exploiting several simplifying assumptions, complete control can
sometimes be reached all the way to the physical Hilbert space.

Different types of assumptions, e.g. symmetry (homogeneity
trivializes anomaly problem) or special matter ingredients (free
massless scalar provides time, leads to solvability).
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What is Loop Quantum Cosmology?

Models full quantizations of gravity by loop methods, tries to
analyze physical effects.

Exploiting several simplifying assumptions, complete control can
sometimes be reached all the way to the physical Hilbert space.

Different types of assumptions, e.g. symmetry (homogeneity
trivializes anomaly problem) or special matter ingredients (free
massless scalar provides time, leads to solvability).

Based on strong reductions, specific
“results cannot really be trusted.” [J. Lewandowski: ILQG seminar]

To model full theory reliably, avoid ad-hoc choices and keep all
required freedom in
→ equations: matter content, refinement scheme, and
→ initial values: squeezed states, mixed states, potentially

highly quantum states
Tool: effective equations.
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Holonomies

Choose coordinates, consider co-moving region of coordinate
volume V0. Expands/contracts by V (t) = a(t)3V0.
Dynamics of a(t) from Friedmann equation for isotropic
components c̃ and p̃ of connection Ai

a = c̃δi
a and densitized triad

Ea
i = p̃δa

i . Poisson bracket V0-independent for rescaled variables

c = V
1/3
0 c̃, p = V

2/3
0 p̃.
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Holonomies

Choose coordinates, consider co-moving region of coordinate
volume V0. Expands/contracts by V (t) = a(t)3V0.
Dynamics of a(t) from Friedmann equation for isotropic
components c̃ and p̃ of connection Ai

a = c̃δi
a and densitized triad

Ea
i = p̃δa

i . Poisson bracket V0-independent for rescaled variables

c = V
1/3
0 c̃, p = V

2/3
0 p̃.

Basic ingredient to quantize curvature: “holonomies”

h = eiℓ0c̃ = eiℓ0c/V
1/3

0 = eic/N 1/3

= eiµc

along straight edges of coordinate length ℓ0. If edges arranged
homogeneously to form graph in region of size V0, there are
N = V0/ℓ

3
0 vertices.

By construction: N coordinate independent, h V0-independent.
Vertex density N /a3V0 coordinate and V0-independent.
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Lattice refinement

Constant co-moving ℓ0: lattice is expanded by a(t) to potentially
macroscopic spacing. Avoid discreteness effects at large volume
if new vertices created dynamically: N grows while ℓ0 shrinks.
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Lattice refinement

Constant co-moving ℓ0: lattice is expanded by a(t) to potentially
macroscopic spacing. Avoid discreteness effects at large volume
if new vertices created dynamically: N grows while ℓ0 shrinks.

Also for flux values ℓ2
0a

2 = ℓ2
0p/V

2/3
0 = p/N 2/3 (inverse triad).

holonomy corrections significant for ȧ/N > k∗ := (N /V0)
1/3

inverse triad corrections significant for a < a∗ := (N /V0)
1/3ℓP

Holonomy corrections decreasing for larger N , inverse triad
corrections increasing: change balance of corrections just by
refining.
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Lattice refinement

Constant co-moving ℓ0: lattice is expanded by a(t) to potentially
macroscopic spacing. Avoid discreteness effects at large volume
if new vertices created dynamically: N grows while ℓ0 shrinks.

Also for flux values ℓ2
0a

2 = ℓ2
0p/V

2/3
0 = p/N 2/3 (inverse triad).

holonomy corrections significant for ȧ/N > k∗ := (N /V0)
1/3

inverse triad corrections significant for a < a∗ := (N /V0)
1/3ℓP

Holonomy corrections decreasing for larger N , inverse triad
corrections increasing: change balance of corrections just by
refining.
Power-law: N = N0a

−6x, 0 < x < −1/2 (limiting case N ∝ V ).

N0 may depend non-trivially on V0 and coordinates: coordinate
dependent scale factor used. If this is ignored, N ∝ V0a

3 and
thus x = −1/2 (µ̄) is the only possibility.
Uniqueness “proof” flawed: possibility of non-trivial coordinate
dependence of N0 is excluded by hand.
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Dynamics

For given refinement, Hamiltonian constraint to be quantized:

−N 2/3 sin2
( c

N 1/3

)√
|p| + 8πG

3

(
p2

φ

2|p|2/3
+ |p|2/3W (φ)

)
= 0

Quantization can be analyzed by effective equations which in
general do not agree with the simple modified Hamiltonian
containing N 2/3 sin2(c/N 1/3) instead of the classical c2.
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Dynamics

For given refinement, Hamiltonian constraint to be quantized:

−N 2/3 sin2
( c

N 1/3

)√
|p| + 8πG

3

(
p2

φ

2|p|2/3
+ |p|2/3W (φ)

)
= 0

Quantization can be analyzed by effective equations which in
general do not agree with the simple modified Hamiltonian
containing N 2/3 sin2(c/N 1/3) instead of the classical c2.

Ineffective equation: simply use classical modification. In
general amounts only to tree level, no quantum corrections.

It is the (almost) complete effective equation for the free theory
W (φ) = 0, which represents a solvable, harmonic system:
no loop corrections, no quantum back-reaction.

Does not generalize to W (φ) 6= 0, just as the effective potential
of the harmonic oscillator (no quantum corrections) does not
generalize to anharmonic systems.
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Harmonic cosmology

Instead: 〈Ĉ〉 = CQ(〈êic〉, 〈p̂〉,∆eic,∆p,Ceicp, . . .) as effective
constraint; see A. Tsobanjan’s talk.
Complicated system, but can be deparameterized first to realize
solvability in free case.
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Harmonic cosmology

Instead: 〈Ĉ〉 = CQ(〈êic〉, 〈p̂〉,∆eic,∆p,Ceicp, . . .) as effective
constraint; see A. Tsobanjan’s talk.
Complicated system, but can be deparameterized first to realize
solvability in free case.

Specific factor ordering, ignoring factors: pφ = ±|ImJ | where
J = p1−x exp(ipxc). With V = p1−x: linear algebra

[V̂ , Ĵ ] = ~Ĵ , [V̂ , Ĵ†] = −~Ĵ† , [Ĵ , Ĵ†] = −2~V̂ − ~
2

With “linear” Hamiltonian, solvability is implied:

d〈V̂ 〉
dφ

=
〈[V̂ , Ĥ ]〉

i~
= −1

2(〈Ĵ〉 + 〈Ĵ†〉)

d〈Ĵ〉
dφ

=
〈[Ĵ , Ĥ ]〉

i~
= −1

2(〈V̂ 〉 + ~) =
d〈Ĵ†〉
dφ
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Positivity

pφ = ±|ImJ | linear if ImJ is positive or negative definite.

Positive frequency: take pφ = ImJ =: H and start with initial
moments of a state supported only on the positive part of specH.
Since H preserved during φ-evolution, support on specH
remains positive.

Due to linearity, there is no quantum back-reaction in evolution;
positivity only provides restrictions of (high order) initial
moments.
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Positivity

pφ = ±|ImJ | linear if ImJ is positive or negative definite.

Positive frequency: take pφ = ImJ =: H and start with initial
moments of a state supported only on the positive part of specH.
Since H preserved during φ-evolution, support on specH
remains positive.

Due to linearity, there is no quantum back-reaction in evolution;
positivity only provides restrictions of (high order) initial
moments.

Alternatively, take pφ = −H and a state supported only on the
negative part of specH.

Superpositions of ±H states allowed, but moments of whole
superposition not as interesting as moments of individual
contributions.
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States through a bounce

Equations of motion for expectation values decouple:

d〈V̂ 〉
dφ

=
〈[V̂ , Ĥ ]〉

i~
= −1

2(〈Ĵ〉 + 〈Ĵ†〉)

d〈Ĵ〉
dφ

=
〈[Ĵ , Ĥ ]〉

i~
= −1

2(〈V̂ 〉 + ~) =
d〈Ĵ†〉
dφ

with general solution

〈V̂ 〉(φ) = 1
2(Ae−φ + Beφ) − 1

2~

〈Ĵ〉(φ) = 1
2(Ae−φ − Beφ) + iH

“Bounce” since |〈V̂ 〉| → ∞ for φ → ±∞, but could enter deep
quantum regime if AB < 0; solvable model would break down.
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Reality condition

Classical: JJ̄ = V 2. Quantum: Ĵ Ĵ† = V̂ 2. Related to physical
inner product: exp(iP ) becomes unitary operator.
Expectation values: |〈Ĵ〉|2 − (〈V̂ 〉 + 1

2~)2 = GV V − GJJ̄ + 1
4~

2.
Implies AB = H2 + O(~), bouncing solution (e2δ = B/A)

〈V̂ 〉(φ) = Hcosh(φ − δ) , 〈Ĵ〉(φ) = −H(sinh(φ − δ) − i)

ρ =
p2

φ

2p3
=

H2

2V 3/(1−x)

−→ energy density bounded above independently of pφ for
x = −1/2, but not for x 6= −1/2.
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Reality condition

Classical: JJ̄ = V 2. Quantum: Ĵ Ĵ† = V̂ 2. Related to physical
inner product: exp(iP ) becomes unitary operator.
Expectation values: |〈Ĵ〉|2 − (〈V̂ 〉 + 1

2~)2 = GV V − GJJ̄ + 1
4~

2.
Implies AB = H2 + O(~), bouncing solution (e2δ = B/A)

〈V̂ 〉(φ) = Hcosh(φ − δ) , 〈Ĵ〉(φ) = −H(sinh(φ − δ) − i)

Uncertainties (e.g. GV V = 〈V̂ 2〉 − 〈V̂ 〉2):

ĠV V = −GV J − GV J̄ , ĠJJ = −2GV J , ĠJ̄ J̄ = −2GV J̄

ĠV J = −1

2
GJJ − 1

2
GJJ̄ − GV V , ĠV J̄ = −1

2
GJ̄ J̄ − 1

2
GJJ̄ − GV V

ĠJJ̄ = −GV J − GV J̄

−→ Reality preserved: ĠV V − ĠJJ̄ = 0.
−→ Near saturation, (∆V )2 = GV V ≈ ~Hcosh(2(φ − δ2)).
In general, δ2 6= δ: asymmetric fluctuations.
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On the momentous role of moments

Fluctuations and higher moments dynamical, in general
back-react on expectation values. Affect results of effective
equations and must be analyzed properly.

Example: Compute 〈Ĉ〉 in Gaussian state assumed to be
realized at all times. [J. Willis; V. Taveras; Y. Ding, Y. Ma, J. Yang]

Gives ineffective constraint with sin2(c/N 1/3) modification, plus
corrections of an order given by the (possibly phase-space
dependent) variance of the state.
Assume: ∆V ∝ V r for some parameter r. Recollapse for r = 0.
[Y. Ding, Y. Ma, J. Yang: 0808.0990]
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On the momentous role of moments

Fluctuations and higher moments dynamical, in general
back-react on expectation values. Affect results of effective
equations and must be analyzed properly.

Example: Compute 〈Ĉ〉 in Gaussian state assumed to be
realized at all times. [J. Willis; V. Taveras; Y. Ding, Y. Ma, J. Yang]

Gives ineffective constraint with sin2(c/N 1/3) modification, plus
corrections of an order given by the (possibly phase-space
dependent) variance of the state.
Assume: ∆V ∝ V r for some parameter r. Recollapse for r = 0.
[Y. Ding, Y. Ma, J. Yang: 0808.0990]

In this scheme only weak control over state, but dynamics of ∆V
must be determined in quantum theory. Equation of motion for
moments: (∆V )/V ≈ const, thus r = 1 and no recollapse
(or other large-volume effect) happens.
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Lest the universe forgets

Dynamical coherent states:

D :=

∣∣∣∣∣ lim
φ→−∞

GV V

〈V̂ 〉2
− lim

φ→∞

GV V

〈V̂ 〉2

∣∣∣∣∣

= 4
H

A

√(
1 − H2

A2
+

1

4

~2

A2

)
(∆H)2

A2
− 1

4

~2

A2
+

(
H2

A2
− 1

)
(∆H)4

A4

of order fluctuations squared.
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Lest the universe forgets

Dynamical coherent states:

D :=

∣∣∣∣∣ lim
φ→−∞

GV V

〈V̂ 〉2
− lim

φ→∞

GV V

〈V̂ 〉2

∣∣∣∣∣

= 4
H

A

√(
1 − H2

A2
+

1

4

~2

A2

)
(∆H)2

A2
− 1

4

~2

A2
+

(
H2

A2
− 1

)
(∆H)4

A4

of order fluctuations squared. Compare with [Corichi, Singh]

D ≤ 8βǫ ∼ 8∆P/P

right hand side linear in relative fluctuations.

Example: βǫ+ ≈ α2(∆V/V )+ ≈ √
α210

−57, thus D ≤ √
α210

−57.
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Lest the universe forgets

Dynamical coherent states:

D :=

∣∣∣∣∣ lim
φ→−∞

GV V

〈V̂ 〉2
− lim

φ→∞

GV V

〈V̂ 〉2

∣∣∣∣∣

= 4
H

A

√(
1 − H2

A2
+

1

4

~2

A2

)
(∆H)2

A2
− 1

4

~2

A2
+

(
H2

A2
− 1

)
(∆H)4

A4

of order fluctuations squared. Compare with [Corichi, Singh]

D ≤ 8βǫ ∼ 8∆P/P

right hand side linear in relative fluctuations.

Example: βǫ+ ≈ α2(∆V/V )+ ≈ √
α210

−57, thus D ≤ √
α210

−57.
(∆V/V )2− ≤ √

α210
−57 + (∆V/V )2+ ≈ √

α210
−57, thus

(∆V/V )− ≈ α
1/4
2 10−28 ≈ α

3/4
2 1028(∆V/V )+ [“(almost) total recall”]
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Cosmic forgetfulness

Asymmetry of fluctuations before and after the bounce
extremely sensitive to initial values (A, H, ∆H).
For different values of H = 〈Ĥ〉, steepness increasing:
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Perturbing harmonic cosmology

Deviations from free model imply quantum back reaction.

−→ Cosmological constant Λ: Hamiltonian still preserved, no
positivity problem, expand Hamiltonian around free model.

If Λ < 0, quantum back-reaction not relevant at large volume:
semiclassicality preserved over long times; similar if positive
spatial curvature. Cyclic models, but fluctuations increase over
several cycles: dGV V /dφ ∼ V GV P [MB, R. Tavakol]
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Perturbing harmonic cosmology

Deviations from free model imply quantum back reaction.

−→ Cosmological constant Λ: Hamiltonian still preserved, no
positivity problem, expand Hamiltonian around free model.

If Λ < 0, quantum back-reaction not relevant at large volume:
semiclassicality preserved over long times; similar if positive
spatial curvature. Cyclic models, but fluctuations increase over
several cycles: dGV V /dφ ∼ V GV P [MB, R. Tavakol]

For Λ > 0, some moments diverge where 〈V̂ 〉 diverges: quantum
back-reaction essential, sin2 c not sufficient. “Recollapses”?

−→ Big rip singularities: ineffective equation singular. [T. Cailleteau,

A. Cardoso, K. Vandersloot, D. Wands] Asymptotes to V = const, ∆φ large.

−→ W (φ) 6= 0: time-dependent Hamiltonian, not preserved.

Quantum back-reaction especially of correlations affects bounce
condition. (Possibly other corrections to ensure positivity.)
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Kinetic-dominated quantum Friedmann eq.
[x = −1/2](

ȧ

a

)2

=
8πG

3

(
ρ

(
1 − ρQ

ρcrit

)

± 1

2

√
1 − ρQ

ρcrit
η(ρ − P ) +

(ρ − P )2

(ρ + P )2
η2

)

where P is pressure and η parameterizes quantum correlations,

ρQ := ρ + ǫ0ρcrit + (ρ − P )

∞∑

k=0

ǫk+1(ρ − P )k/(ρ + P )k

with fluctuation parameters ǫk; ρcrit = 3/8πGµ2 with scale µ.
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Kinetic-dominated quantum Friedmann eq.
[x = −1/2](

ȧ

a

)2

=
8πG

3

(
ρ

(
1 − ρQ

ρcrit

)

± 1

2

√
1 − ρQ

ρcrit
η(ρ − P ) +

(ρ − P )2

(ρ + P )2
η2

)

where P is pressure and η parameterizes quantum correlations,

ρQ := ρ + ǫ0ρcrit + (ρ − P )

∞∑

k=0

ǫk+1(ρ − P )k/(ρ + P )k

with fluctuation parameters ǫk; ρcrit = 3/8πGµ2 with scale µ.

Simple behavior if ρ = P (free, massless scalar):
bounSingh. [P. Singh, PRD 73 (2006) 063508]

Also if η = 0 when ρQ = ρcrit (no correlations).

For x 6= −1/2, bounce density depends on initial values, but also
on x and N0 of refinement scheme (even in free case).
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Lewandowski doctrine

Specific numbers (e.g. bounce density, growth of fluctuations
over many cycles based on special initial state) are parameter
dependent (refinement, class of states).

But general parameter-freedom, e.g. x combined with N0 can be
retained and is already constrained by phenomenological
[W. Nelson, M. Sakellariadou, G. Hossain, G. Calcagni]

as well as stability considerations in anisotropic models
[MB, D. Cartin, G. Khanna].
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Lewandowski doctrine

Specific numbers (e.g. bounce density, growth of fluctuations
over many cycles based on special initial state) are parameter
dependent (refinement, class of states).

But general parameter-freedom, e.g. x combined with N0 can be
retained and is already constrained by phenomenological
[W. Nelson, M. Sakellariadou, G. Hossain, G. Calcagni]

as well as stability considerations in anisotropic models
[MB, D. Cartin, G. Khanna].

Effective equations allow an analysis of the behavior of generic
states: squeezed, mixed, possibly highly quantum near the big
bang.

Rather than specific but too special values, “negative”
statements can be derived in the form of limitations. Reliable if
they even occur in highly simplified (possibly solvable) models.
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