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• In general relativity, the gravitational field encoded in the very geometry
of space-time ⇒ space-time itself ends at singularities. General
expectation: theory is pushed beyond its domain of applicability. Must
incorporate quantum physics. Singularities are our gateways to physics
beyond Einstein.
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• Singularities are our gateways to physics beyond Einstein.

• But straightforward incorporation of quantum physics a la traditional
WDW quantum cosmology did not succeed.

• Situation very different in LQG: Physics does not stop at these
singularities. Quantum Geometry extends its life. Resolution of space-like
singularities has been analyzed at three levels:

i) Quantum Hamiltonian constraint does not break down. (Cosmological
and black hole interior models, some midi-superspaces)

ii) + construction of the Physical Hilbert space, Dirac observables,
emergent time (homogeneous models);

iii) + Detailed numerical solutions, effective equations and comparison
between the two; exactly soluble models (homogeneous, isotropic).
Important questions (raised by Brunnemann & Thiemann; Green & Unruh) have
been answered.
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• Goal: To present an overview and discuss conceptual issues,
emphasizing subtleties and clarifying the overall situation to set the stage.
Can be confusing because, as the subject evolved, we learned from
mistakes. Will present the final picture for rather than summary of how
things evolved.

• In LQC three tools have been used:
i) Numerical evolution in exact LQC
ii) Effective equations
iii) Exact analytical results in the k=0, Λ=0 model

• Organization:
I. Summary of the FRW Models in LQC
II. FAQs and conceptual clarifications.

(Oriented toward discussion.)
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I.1. k=0 Models

FRW, k=0 Model coupled to a massless scalar field φ. Instructive because
every classical solution is singular. Provides a foundation for more
complicated models.
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k=0 LQC: Gamow’s Preference Realized!
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k=0 Results

Assume that the quantum state is semi-classical at a late time and evolve
backwards and forward. Then: (AA, Pawlowski, Singh)

• The state remains semi-classical till very early and very late times,
i.e., till R ≈ 1/lp2 or ρ ≈ 0.01ρPl. ⇒ We know ‘from first principles’ that
space-time can be taken to be classical during the inflationary era
(since ρ ∼ 10

−12ρPl at the onset of inflation).

• In the deep Planck regime, semi-classicality fails. But quantum
evolution is well-defined through the Planck regime, and remains
deterministic unlike in other approaches. No new principle needed.

• The situation is the same if we include a cosmological constant
(Pawlowski’s talk) or an inflationary potential (AA, Pawlowski, Singh).

In all cases, the quantum space-time is vastly larger than what general
relativity had us believe.
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k=0 Results
• No unphysical matter. All energy conditions satisfied. But the left side
of Einstein’s equations modified because of quantum geometry effects
(discreteness of eigenvalues of geometric operators.): Main difference
from WDW theory.

• To compare with the standard Friedmann equation, convenient to do an
algebraic manipulation and move the quantum geometry effect to the right
side. Then:
(ȧ/a)2 = (8πGρ/3)[1 − ρ/ρcrit] where ρcrit ∼ 0.41ρPl.
Big Bang replaced by a quantum bounce.

• The matter density operator ρ̂ = 1
2 (V̂φ)−1 p̂2

(φ) (V̂φ)−1 has an absolute

upper bound on the physical Hilbert space (AA, Corichi, Singh):
ρsup =

√
3/16π2γ3G2

~ ≈ 0.41ρPl!
Provides a precise sense in which the singularity is resolved.
• Quantum geometry creates a brand new repulsive force in the Planck
regime, replacing the big-bang by a quantum bounce. Physics does not
end at singularities.
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I.2 The Closed Model

Another Example: k = 1 FRW model with a massless scalar field φ.
Instructive because again every classical solution is singular; scale factor
not a good global clock; More stringent tests because of the classical
re-collapse. (de Sitter, Tolman, Sakharov, Dicke,...)
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k=1 Model: WDW Theory
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k=1 LQC: : Bouncing/Phoenix Universes.
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k=1: Key Results
(AA, Pawlowski, Singh, Vandersloot)

• Classical Re-collapse: The infra-red issue.
ρmin = (3/8πGa2

max)
(
1 + O(ℓpl

4/a4
max)

)

So, even for a very small universe, amax ≈ 23ℓpl, (i.e. p(φ) = 5 × 103
~),

agreement with the classical Friedmann formula to one part in 105.
Classical GR an excellent approximation between a ∼ 8ℓpl and a ∼ 23ℓpl.
For macroscopic universes, LQC prediction on recollapse
indistinguishable from the classical Friedmann formula.

• Quantum Bounces: The ultra-violet issue
For a universe which attains vmax ≈ 1 Mpc3, vmin ≈ 6 × 1016cm3 ≈
10115ℓpl

3! What matters is curvature which enters Planck regime at this
volume.
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I.3 Summary

• In LQG, the interplay between geometry and physics is elevated to
quantum level. Singularities in homogeneous classical GR are resolved:
Quantum space-times can be vastly larger than what GR had us believe.
Ramifications on some of the most interesting, fundamental issues.

• In k = 0 (and k = 1) FRW models with or without Λ, complete control on
the physical sector of the theory. LQC evolution deterministic across the
classical big bang and big crunch for all quantum states. Singularities are
resolved because of unforeseen quantum geometry effects at the Planck
scale. (Bianchi I: Every time a curvature invariant reaches Planck scale, quantum

geometry effects intervene and dilute it: Wilson-Ewing’s Talk)

• Challenge to background independent theories: Detailed recovery of
classical GR at low curvatures/densities? Met in homogeneous models.
As we saw from Berger & Henderson’s talks, the BKL conjecture suggests
a singularity resolution theorem: all space-like singularities of GR may be
resolved by quantum geometry effects.

– p. 13



II. FAQs and Conceptual Clarifications

II.1 Why are the predictions of the WDW theory so different from those of
LQC?

• Since a well-defined kinematic framework did not exist in the full WDW
theory, in quantum cosmology standard quantum mechanics was used.
Thus:
Kinematical Quantum States: Ψ(a, φ); âΨ(a, φ) = aΨ(a, φ) etc.
Quantum evolution governed by the Wheeler-DeWitt differential equation:

ℓ4Pl

∂2

∂a2
(f(a)Ψ(a, φ)) = constG Ĥφ Ψ(a, φ)

Without additional assumptions, singularity is not resolved.

• In LQC, situation is very different due to the Quantum Riemannian
Geometry. How is this possible? In QM we have the von Neumann’s
uniqueness theorem!
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• Unlike in the WDW approach, quantum kinematics in LQG is rigorously
developed. The powerful uniqueness theorem! (Lewandowski, Okolow,

Sahlmann, Thiemann) It provides the arena to formulate quantum Einstein
equations. In LQC we could mimic this framework step by step.
Hgr = L2(R̄Bohr, dµBohr) 6= L2(R, dc). New Quantum Mechanics! (In the
WDW quantum cosmology, one did not have guidance from a full theory.)

• In LQG, holonomies well defined but not connections. Like asking
U(λ) = exp iλx well-defined but operator x need not exist.
In LQC then von-Neumann’s uniqueness result bypassed.
Inequivalent representations even for mini-superspaces. New quantum
mechanics! Novel features precisely in the deep Planck regime.

• The LQC kinematics cannot support the WDW dynamics. The LQC
dynamics is based on quantum geometry. The WDW differential equation
is replaced by a difference equation. Step size governed by the smallest
eigenvalue of the area operator in LQG. Good agreement with the WDW
equation at low curvatures but drastic departures in the Planck regime
precisely because the WDW theory ignores quantum geometry.
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II.2 How is the Hamiltonian constraint ‘quantized’ in LQC?
• Form of the constraint CH ∼ (ǫij

kEa
i Eb

j/
√

q)
︸ ︷︷ ︸

Thiemann

F k
ab

︸︷︷︸

holonomy

• Classically: F k
ab = −2 limAr�→0

(
Tr(h�ab

− 1)τk/Ar�

)

Quantum Theory: Limit does not exist because there is no local operator
corresponding to the connection or curvature. Different from full LQG: Diff
constraint handled by gauge fixing.

• LQC View (AA, Bojowald, Lewandowski, ): Quantum geometry ⇒ should not
shrink the loop to zero but only till the area enclosed Ar� w.r.t. the fiducial
metric equals the lowest eigenvalue ∆ = 2

√
3πγℓ2Pl of the area operator.

So, the fundamental operator has Planck scale non-locality; Familiar local
expression emerges only in the classical limit. (µo-Scheme)

• Singularity resolved. But the resulting quantum Hamiltonian constraint
had a serious limitation: Predicted deviations from the classical theory
even in certain ‘tame’ situations. (More later). Physically motivated,
improved constraint remedies this drawback while retaining all desirable
features.
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• New idea (AA, Pawlowski, Singh): Do this with Physical area of � (which is
state dependent). The resulting operator mimics certain features of the full
theory. Idea subtle to implement but important physical consequences:
Overcomes problems with the older LQC dynamics. (µ̄-Scheme).
(more later)

• Hamiltonian constraint: Use a representation in which geometry (i.e.
V̂ ∼ â3) and matter field (i.e., φ̂) are diagonal : Ψ(v, φ)

Then the Wheeler DeWitt equation is replaced by a difference equation:

C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v)Ψ(v − 4, φ) = ĤφΨ(v, φ)

Fundamentally, a constraint equation. Selects physical states. However,
this equation also dictates quantum dynamics.

• The ‘lattice’ has uniform spacing in v ∼ a3 (not p or µ which ∼ a2).
Dynamics cannot be supported by a Vehlino type quantum kinematics.
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II.3 How do you extract dynamics/physics from the ‘frozen formalism’?

To extract physics, we need to:

• Solutions to the constraint: Physical states. Introduce a physical inner
product and suitable Dirac observables.

• If possible, isolate ‘time’ to give meaning to ‘evolution’. Not essential but
very convenient.

• Construct states which represent the actual universe at late time.
‘Evolve back’ towards the big bang.

• Is the classical singularity ‘resolved’? In what sense? (Brunnemann and

Thiemann) ‘Wave function vanishes at the singularity’ not enough; Physical
inner product may be non-local. Need to analyze the behavior of the Dirac
observables. Do observables which diverge at the big bang remain
bounded on physical states?
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• The quantum Hamiltonian constraint takes the form:
∂2

φΨ(v, φ) = −Θ Ψ(v, φ) (⋆)

where Θ is a positive, self-adjoint difference operator independent of φ :
Θ Ψ(v, φ) = C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v) Ψ(v − 4, φ).
Suggests φ could be used as the ‘evolution parameter’ or emergent time
also in the quantum theory. Relational dynamics.

• Physical states: solutions to (⋆). Observables: p̂φ and V̂ |φ=φo
. Inner

product: Makes these self-adjoint or, equivalently, use the more general
procedure of group averaging. Semi-classical states: Generalized
coherent states.

• Physical states:
Ψ(v, φ) satisfying −i~∂φΨ(v, φ) =

√
Θ Ψ(v, φ)

Analogy with KG equation in a static space-time.

Dirac observables:
p̂(φ)Ψ(v, φ) = −i~∂φ Ψ(v, φ) ≡

√
ΘΨ(v, φ)

V̂ |φ Ψ(v, φ) = ei
√

Θ(φ−φo) |v|Ψ(v, φo). Similarly ρ̂|φ.
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II.4 What are the differences between the older, µo evolution of and the µ̄
framework in these models?

Differences are very significant, with interesting lessons for full LQG.

• In the k=0 model on R
3, scale factor a refers to a fiducial metric:

qab = a2(t) qo
ab. If qo

ab → α2 qo
ab, a → α−1a. Physics should not depend on

qo
ab or the value of a(t). (So, claims such as quantum effects are important for a < a⋆ in

the older literature on homogeneous models (based on the spectrum of 1/V operator) are

physically unsound.).

• Further, in this case every quantization requires an additional structure:
An elementary Cell C. We absorb factors of the volume Vo of C w.r.t. qo

ab in
the definition of canonical variables c, p so that the symplectic structure is
independent of the qo

ab choice. So, the classical Hamiltonian theory
depends only C and not on qo

ab. Same is true of quantum kinematics.
Thus, e.g., p3/2 is the physical volume of C.

• i) In µo quantization, the Hamiltonian constraint operator depends on
qab
o again. In the µ̄ quantization, it does not.
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• ii) For each choice of C we get a quantum theory. In the µo evolution,
the density at the bounce point goes as: ρb ∝ 1/pφ. So, a Gaussian
peaked at a classical phase space point can bounce with ρb = density of
water! Major departures from the classical theory also away from the
bounce: in presence of a cosmological constant, large deviations occur
when Λa2 ≥ 1 although the space-time curvature is low. In µ̄ evolution,
ρb ≈ 0.41ρpl always. No departures from GR at low curvatures.

• iii) Physical results should be independent of the choice of C. In µ̄
evolution they are. Not in the µo scheme. Ex: Given a classical solution
(a(t), φ(t)) when do quantum effects become important? Answer in the µo

scheme depends on the choice of the cell! Answer not ‘gauge invariant’.
In the µ̄ scheme it is.

• Lessons:
a) LQC: Although it seems natural at first, detailed considerations show
that the µo quantization of the Hamiltonian constraint is physically
incorrect;
b) LQG: Whether a quantization of the Hamiltonian constraint has a ‘good
infra-red behavior’ is likely to be very subtle. (e.g., Sakellariadou’s talk)
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II.5 Is there an analytical way of understanding why in numerical
simulations the bounce occurs always at ρ ≈ 0.41ρPl?

• Yes: Normally in LQC one starts by setting N = 1, i.e., proper time
gauge and goes to φ as the evolution parameter only in quantum theory. If
we start with φ (i.e., N = a3), constraint simplifies. Fully analytical
treatment possible (was called sLQC in the literature).

• Then matter density operator ρ̂ = 1
2 (V̂φ)−1 p̂2

(φ) (V̂φ)−1 has an absolute

upper bound on the physical Hilbert space (Corichi, Singh, AA) :
ρsup =

√
3/16π2γ3G2

~ ≈ 0.41ρPl!

• Furthermore, for quantum states which are Gaussians at a late time,

ρbounce = ρsup

[

1 − O
( G~

2

p2
(φ) + (∆p(φ))2

)

]
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II.6 Is the bounce restricted only to semi-classical states?

• No. In sLQC, for any normalized state Ψ in the physical Hilbert space
we have:

(Ψ, V̂φΨ)Phy = V+e
√

12πGφ + V−e−
√

12πGφ

where V± are determined by the ‘initial data’ Ψ(v, φo) at any φo. So:

Vmin =
√

(V−V+) and φbounce =
1

2
√

12πG
(lnV− − lnV+)

– p. 24



II.7 Is there a precise relation between the WDW theory and LQC?

Question analyzed in detail for the exactly soluble k=0 model (Corichi, Singh,

AA).

Start with the same physical state at φ = φo and evolve using sLQC or
WDW theory. Then:

Certain predictions of LQC approach those of the WDW theory as the
area gap λ goes to zero:
Given a semi-infinite ‘time’ interval ∆φ and ǫ > 0, there exists a δ > 0
such that ∀λ < δ, ‘physical predictions of the two theories are within ǫ
of each other.’

However, approximation is not uniform. The WDW theory is not the
limit of sLQC:
Given N > 0 however large, there exists a φ such that
〈V̂φ〉sLQC − 〈V̂φ〉WDW > N .
LQC is fundamentally discrete.
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II.8 What happens to the Bousso entropy bound in LQC?

• Conjecture ( Simplest Version): The matter entropy flux across L(B) is
bounded by

S :=
∫

L(B)
SadAa ≤ AB/4ℓpl

2.

• Curious features:
i) Requires a notion of entropy current;
ii) Refers to quantum gravity;
iii) Requires a classical geometry.
Consequently, quite difficult to test in practice!

• In classical GR:
If we consider k=0 FRW models filled with radiation,

S

AB
=

ℓpl
2

6
(

2

45π
)1/4

√
ℓpl√
τf

(

1 −
√

τi

τf

)

For round B, the bound holds if τf > 0.1ℓpl but
arbitrarily large violations near the singularity.

– p. 26



• LQC provides an ideal arena:
i) Singularity is resolved by quantum gravity;
ii) The wave function is sharply peaked about a mean metric, a smooth
field (although coefficients involve ~).

• Answer: S
AB

< 0.244/ℓpl
2 (AA, Wilson-Ewing)

The bound is satisfied in LQC!
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II.9 LQC is just a toy model. Why should one be interested in it?

Physically important examples can be powerful.
• Full QED versus Dirac’s hydrogen atom.
• Singularity Theorems versus first discoveries in simple models.
• BKL behavior: homogeneous Bianchi models.
• Since inhomogeneities can be treated as perturbations classically, one
could do QFT for them on a quantum geometry provided by LQC of
homogeneous modes (Lewandowski’s talk); or, through Fock quantization in a
‘hybrid’ approach (Mena’s talk).

Does not imply that behavior found in examples is necessarily generic.
Rather, they can reveal important aspects of the full theory. Can work
one’s way up by considering more and more complicated cases. At each
step, physical checks well beyond formal mathematics. Can have strong
lessons for the full theory. For example, LQC has taught us that loopy
techniques do capture sectors with good semi-classical behavior but only
if the Hamiltonian constraint is quantized in a certain way.
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Summary

• Key differences between LQC and WDW theory arise because of
quantum geometry. In the limit that the area gap shrinks to zero, LQC
reduces to the WDW theory.

• LQC provides explicit examples where the complete physical sector can
be constructed. Provides a clear sense in which the singularity is
resolved. Lessons on how to extract dynamics from the frozen formalism.

• Already in the simple FRW models, quantization of the Hamiltonian
constraint turned out to be far more subtle than one could have imagined.
The µo scheme looked natural at first. But turned out not to be viable once
the physical sector was constructed and analyzed in detail. Important
lessons for full LQG.

• The Bousso entropy bound is violated in classical GR near the big bang
singularity. But respected in LQC. Confluence of divergent ideas. But the
analysis also shows that the entropy bound does not have to be a
fundamental building block of quantum gravity but may emerge in
appropriate conditions from quantum geometry.
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Supplement: LQC Kinematics
• In LQG the canonically conjugate variables are:
Ai

a, SU(2) connections and, Ea
i , orthonormal triads.

Spatial homogeneity and isotropy implies
⋆ Aa = c ω̊i

aσi
︸︷︷︸

fixed

, Ea = p e̊a
i σi

︸︷︷︸

fixed

–c: ∼ ȧ
–holonomy: he(c) = cosµc 1 + sinµc ėaω̊i

aσi

(Almost periodic in c )
– |p| = a2 .
– p → −p changes only the orientation of the triad.
Large gauge transformation; leaves physics invariant.

⋆ Canonically conjugate pairs:
c, p for gravity φ, pφ for matter

• Loop quantum cosmology:
Key strategy:
Do not naively set H = L2(R, dc) and ĉΨ(c) = cΨ(c); p̂Ψ(c) = −i~dΨ

dc .
Rather, Follow full theory.
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New Quantum Mechanics

⋆ States: depend on c only through holonomies
⇒ Almost periodic functions of c, ∼ exp iµc where µ ∈ R.
⋆ Operators: holonomies ĥe(c) act by multiplication
Momentum fluxes ∼ p̂ = −i~ d

dc

Full theory suggests: No operator ĉ corresponding to c; i.e., ĥe(c) not
weakly continuous in e ∼ µ ⇒ von Neumann’s uniqueness theorem
by-passed. New Quantum Mechanics possible ( Bojowald, Lewandowski, AA) .

• Differences from standard quantum mechanics:
⋆ States: Built from holonomies: Ψ(c) =

∑
αj eiµjc

where µj ∈ R; αj ∈ C;
∑

j |αj |2 < ∞
Hgrav = L2(R̄Bohr, dµo) 6= L2(R, dc)

⋆ operators: ĥ, p̂ well-defined. But No ĉ.
Spectrum of p̂ is the real line with discrete topology; eigenstates eiµc

normalizable.

• Structure mimics that of the full theory. The new kinematics does not
support WDW dynamics.
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