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Extreme mass-ratio inspirals

e Consider the one family of spacetimes generated by the
circular inspiral of a small black hole into a larger black hole

JaB = gaﬁ(xva 5)
* As ¢ — U, what is the mathematical nature of the dependence
onc?

e Two aspects: source or orbital motion (Tanjas talk), wave
generation (this talk)




Timescales in the Problem
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More precise version of question

e Different results for behavior of ¢.s3(c) at distances from
small black hole of order ~¢, ~ 1, ~1/¢ . Global
consistent solution obtained by matching.

* Here focus on blue domain
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Problems with conventional pert. scheme

1. To linear order, conservation of stress energy forces the
particle to move on a geodesic

2. Waveforms computed from an inspiralling motion using
linearized theory expected to be gauge dependent

3. Going to second order does not help: it breaks down after
a dephasing time ~ M /\/c
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Metric ansatz in two timescale method

gaﬁ(taraeaqb; 6) — ( )(T 0 Qb)

+5g((15)(Q7“7QQ Qo 1, 7,0, 0)

—1_529(()4@) (Qfm qdo, 4e¢, t y Ty 07 ¢)
—
where | = ={ and periodicity in ¢s assumed

* Here the angle variables ¢/, (/g, (/4 are obtained by solving
for the orbital motion, and are of the form

qi(t,e) = %fi(o) (ct) + P (et) + . ..

* Self-consistency verified by substitution into Einsteins eqns.




Leading (adiabatic) order

* Ansatz: Gas(t, 7,0, 0;e) = ( )('r' 0, )

+5g((15)(Q7“7QQ Qo 1, 7,0, 0)

—1_529(()4@) (Qfm qdo, 4e¢, t y Ty 07 ¢)
—
where | = ¢ and periodicity in ¢S assumed

* Obtain “linearized Einstein equation” ¢';"[¢'/] =0 as a
PDE on a 6D manifold with coordinates ¢,., gy, g, 7,0, ¢

(1) 993
* Solutionis 9,5 = 83 da(t) +

_|_Fozﬁ [QTa qo,q¢, T, 07 ¢7 E(£>7 LZ (5)7 K(gﬂ
where the function F,; is the same as in standard pert
theory with geodesic orbits




Conclusions

* The two-timescale method gives a self-consistent
framework for computing extreme mass ratio inspirals that
resolves the difficulties with standard perturbation theory




