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Why quantum gravity?

−→ Planck length ℓP =
√

G~/c3 ≈ 10−35m tiny, may suggest
only negligible effects of order ℓP/L.

But: detailed derivation required. Example: Bohr radius
a0 ∝ ~

2/mee
2 from dimensional arguments. Works for hydrogen,

but what about heavy elements of Z ∼ 100?

Quantum gravity: discrete structure of N “atoms of geometry.”
Small size, but combined with large dimensionless number. How
does N enter quantum gravity corrections?
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Why quantum gravity?

−→ Planck length ℓP =
√

G~/c3 ≈ 10−35m tiny, may suggest
only negligible effects of order ℓP/L.

But: detailed derivation required. Example: Bohr radius
a0 ∝ ~

2/mee
2 from dimensional arguments. Works for hydrogen,

but what about heavy elements of Z ∼ 100?

Quantum gravity: discrete structure of N “atoms of geometry.”
Small size, but combined with large dimensionless number. How
does N enter quantum gravity corrections?

−→ Big bang preceded by singularity in general relativity:
vanishing volume in any case small compared to ℓP.

Crucial changes due to quantum gravity may or may not prevent
singularities.

Precise form of what happens may have observational
ramifications at later times.
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Principles

Any approach to quantum gravity is based on basic principles
which imply characteristic changes to the classical behavior.

Even before observations become available, consistency
presents strong conditions and feedback for fundamental
properties of the underlying quantum theory of gravity.

Reliably extracting these effects provides phenomenological
properties which can eventually be used to compare with
observations.
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Principles

Any approach to quantum gravity is based on basic principles
which imply characteristic changes to the classical behavior.

Even before observations become available, consistency
presents strong conditions and feedback for fundamental
properties of the underlying quantum theory of gravity.

Reliably extracting these effects provides phenomenological
properties which can eventually be used to compare with
observations.

Both fundamental and phenomenological aspects can be
addressed with the concept of effective equations.

Not limited to correction terms in classical equations, but can be
used even in strong quantum regimes such as the big bang.

Does not only provide phenomenological corrections but also a
manageable analysis of consistency issues.
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Loop quantum gravity

Status of consistency is still incomplete.

Nevertheless, has suggested several new effects – chiefly based
on the discreteness of spatial geometry – which may well have
observable implications.

Effective equations crucial not only to analyze the consistency
further but also to bridge the gap to phenomenology by
providing reliable quantum corrections.

As a canonical quantization of general relativity, it requires its
own techniques for effective equations (rather than effective
actions). Now available and applied to cosmological issues.
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Loop variables

General relativity can be formulated as gauge theory in Ashtekar
variables (Ai

a, E
b
j ) with gauge group SO(3) for rotations.

Ea
i determines spatial geometry: Ea

i E
b
i = det qqab,

Ai
a related to change in time of geometry −→ momentum.
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Loop variables

General relativity can be formulated as gauge theory in Ashtekar
variables (Ai

a, E
b
j ) with gauge group SO(3) for rotations.

Ea
i determines spatial geometry: Ea

i E
b
i = det qqab,

Ai
a related to change in time of geometry −→ momentum.

Define holonomies and fluxes independently of metric:

he(A) = P exp

∫

e
Ai

aτiė
adt , FS(E) =

∫

S
d2ynaE

a
i τi

for any curve e and surface S in space (τi: Pauli matrices)

Holonomies serve as creation operators of geometrical
excitations measured by fluxes.
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Discrete spectrum (U(1)-simplification)

Define basic state |0〉 by 〈Aa|0〉 = 1: independent of holonomies.
Excited states

|e1, n1; . . . ; ei, ni〉 = ĥn1

e1
· · · ĥni

ei
|0〉

General state labeled by graph g and integers ne as quantum
numbers on edges

ψg,n(Aa) =
∏

e∈g

he(Aa)
ne =

∏

e∈g

exp(ine ∫
e

dtėaAa)
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Discrete spectrum (U(1)-simplification)

Define basic state |0〉 by 〈Aa|0〉 = 1: independent of holonomies.
Excited states

|e1, n1; . . . ; ei, ni〉 = ĥn1

e1
· · · ĥni

ei
|0〉

General state labeled by graph g and integers ne as quantum
numbers on edges

ψg,n(Aa) =
∏

e∈g

he(Aa)
ne =

∏

e∈g

exp(ine ∫
e

dtėaAa)

Flux quantized as derivative operator, measures excitation level:

F̂Sψg,n =
G~

i

∫

S
d2yna

δψg,n

δAa(y)

= ℓ2P
∑

e∈g

ne

∫

S
d2y

∫

e
dtnaė

aδ(y, e(t))he
∂ψg,n

∂he
= ℓ2P

∑

e∈g

neInt(S, e)ψg,n

Discrete spectrum of geometry.
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Excitations of geometry

Multiplying with holonomies for a given set of curves creates
dependence on Ai

a along curves and thus geometry.

Single excitation:

Loop as visualization of state. Physical meaning through
measurement of flux illustrated by intersecting surface.
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Excitations of geometry

Multiplying with holonomies for a given set of curves creates
dependence on Ai

a along curves and thus geometry.

Higher excitations in two ways:

use creation operators for
the same loop
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Excitations of geometry

Multiplying with holonomies for a given set of curves creates
dependence on Ai

a along curves and thus geometry.

Higher excitations in two ways:

use creation operators for
the same loop

or use different loops.

Strong excitation necessary for macroscopic geometry.
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Dynamics

Ĥ =
∑

v,IJK

ǫIJKtr(hv,Ihv+I,Jh
−1
v+J,Ih

−1
v,Jhv,K [h−1

v,K , V̂ ])

as (simplified) Hamiltonian: excitations of geometry take place
dynamically. Universe as growing crystal of discrete space:
atoms of space created and excited as universe expands.

Precise balance of different forms of excitations important for
details of quantum corrections. (More later.)
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Dynamics

Ĥ =
∑

v,IJK

ǫIJKtr(hv,Ihv+I,Jh
−1
v+J,Ih

−1
v,Jhv,K [h−1

v,K , V̂ ])

as (simplified) Hamiltonian: excitations of geometry take place
dynamically. Universe as growing crystal of discrete space:
atoms of space created and excited as universe expands.

Precise balance of different forms of excitations important for
details of quantum corrections. (More later.)

Significant at high curvature (big bang), but there may also be
many small corrections adding up in a large universe (dark
energy).

Dark energy as Brownian motion of quantum gravity?
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Quantum corrections

Three types of quantum corrections, in general equally
important:

−→ Entire states evolve which spread and deform. Quantum
fluctuations, correlations and higher moments independent
variables back-reacting on expectation values. Quantum
degrees of freedom arise, which incorporate some of the effects
of higher time derivatives.

−→ Holonomies as non-local, non-linear functions imply
corrections similar to some terms in higher curvature actions.

−→ Inverse metric components receive corrections since
operators with zero in their discrete spectra have no inverse.

Can be incorporated in effective equations, taking into account
fundamental aspects such as physical normalization of states.
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Applications

−→ Resolve big bang singularity in isotropic models by new
repulsive forces due to quantum gravity.

−→ Include inhomogeneities. Determine evolution of gauge
invariant perturbations.
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Applications

−→ Resolve big bang singularity in isotropic models by new
repulsive forces due to quantum gravity.

−→ Include inhomogeneities. Determine evolution of gauge
invariant perturbations.

Analysis combines fundamental properties of Hamiltonian
(constraint) with phenomenological properties of cosmological
scenarios.

Example: gauge invariant perturbations possible only if discrete
structure of space respects general covariance. (More later.)
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Illustration: anharmonic oscillator

Hamiltonian: Ĥ = 1
2m p̂

2 + V (q̂) = 1
2m p̂

2 + 1
2mω

2q̂2 + 1
3λq̂

3

Equations of motion

d

dt
〈q̂〉 =

1

i~
〈[q̂, Ĥ]〉 =

1

m
〈p̂〉

d

dt
〈p̂〉 =

1

i~
〈[p̂, Ĥ ]〉 = −V ′(〈q̂〉) − λ(∆q)2

d

dt
(∆q)2 =

2

m
Cqp

d

dt
Cqp =

1

m
Cqp +mω2(∆q)2 + 6λ〈q̂〉(∆q)2 + 3λG0,3

. . .

with covariance Cqp = 1
2〈q̂p̂+ p̂q̂〉 − 〈q̂〉〈p̂〉 and higher moment

G0,3 = 〈(q̂ − 〈q̂〉)3〉 = 〈q̂3〉 − 3〈q̂〉(∆q)2 − 〈q̂〉3 of third order
(skewness).
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Effective equations

Infinite system of coupled differential equations. Manageable
only if decoupled approximately. Crucial: Solvable systems
which decouple exactly, then perturbations around them.
Example: harmonic oscillator.
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Effective equations

Infinite system of coupled differential equations. Manageable
only if decoupled approximately. Crucial: Solvable systems
which decouple exactly, then perturbations around them.
Example: harmonic oscillator.

Solvable system for cosmology: spatially flat cosmology with
free massless scalar φ.

Use variables based on exp(ia2xȧ) with −1/2 < x < 0:
holonomies, discreteness, refinement. (More later.)

V = a2(1−x) , J = a2(1−x) exp(ia2xȧ)

as non-canonical position and momentum:

[V̂ , Ĵ ] = ~Ĵ , [V̂ , Ĵ†] = −~Ĵ† , [Ĵ , Ĵ†] = −2~V̂ − ~
2

Hamiltonian (in φ) Ĥ = 1
2i(Ĵ − Ĵ†) linear.
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States through a bounce

Equations of motion for expectation values decouple:

d〈V̂ 〉
dφ

= −1
2(〈Ĵ〉 + 〈Ĵ†〉) ,

d〈Ĵ〉
dφ

= −1
2(〈V̂ 〉 + ~) =

d〈Ĵ†〉
dφ

solved by V (φ) = Hcosh(φ− δ) − ~, which never reaches zero.

(Also solved by V (φ) = Hsinh(φ− δ) − ~, but ruled out using
physical normalization of state used for expectation value.)
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d〈Ĵ†〉
dφ

solved by V (φ) = Hcosh(φ− δ) − ~, which never reaches zero.

(Also solved by V (φ) = Hsinh(φ− δ) − ~, but ruled out using
physical normalization of state used for expectation value.)

The Missing Link – p.13



States through a bounce

Equations of motion for expectation values decouple:

d〈V̂ 〉
dφ

= −1
2(〈Ĵ〉 + 〈Ĵ†〉) ,

d〈Ĵ〉
dφ

= −1
2(〈V̂ 〉 + ~) =

d〈Ĵ†〉
dφ

solved by V (φ) = Hcosh(φ− δ) − ~, which never reaches zero.

(Also solved by V (φ) = Hsinh(φ− δ) − ~, but ruled out using
physical normalization of state used for expectation value.)

Solvability allows determination of dynamical coherent states
and their spreading behavior.

Can pre-bounce fluctuations be constrained well
observationally?

How much can we learn about the state before the big bang
(even in this special solvable model)?

Depends on assumptions we can afford to put in.
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Cosmic forgetfulness

Asymmetry of fluctuations before and after the big bang
extremely sensitive to initial values (A).
For increasing H = 〈Ĥ〉, steepness increasing:
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Effective Friedmann equation

Solvable model as basis for perturbations, e.g. when potential
present. Then, fluctuations and correlations do matter:

(

ȧ

a

)2

=
8πG

3

(

ρ

(

1 − ρQ

ρcrit

)

± 1

2

√

1 − ρQ

ρcrit
η(ρ− P ) +

(ρ− P )2

(ρ+ P )2
η2

)

where P is pressure and η parameterizes quantum correlations,

ρQ := ρ+ ǫ0ρcrit + (ρ− P )

∞
∑

k=0

ǫk+1(ρ− P )k/(ρ+ P )k

with fluctuation parameters ǫk; ρcrit = 3/8πGµ2 with scale µ.

Simple behavior if η = 0 or ρ = P : bounce immediate.
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Isotropic models

Interactions have several crucial effects:

−→ Energy density ρQ quantum corrected in 1 − ρQ/ρcrit. Would
still give rise to bounce, but at different energy density. Bounce
realized for states which weakly correlated near ρ ∼ ρcrit (e.g.
semiclassical).

−→ Correlations matter, add positive contribution to (ȧ/a)2. May
(or may not) prevent the bounce.

−→ Correlations also determine squeezing of states, and thus
asymmetry between pre- and post-bounce fluctuations.
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Isotropic models

Interactions have several crucial effects:

−→ Energy density ρQ quantum corrected in 1 − ρQ/ρcrit. Would
still give rise to bounce, but at different energy density. Bounce
realized for states which weakly correlated near ρ ∼ ρcrit (e.g.
semiclassical).

−→ Correlations matter, add positive contribution to (ȧ/a)2. May
(or may not) prevent the bounce.

−→ Correlations also determine squeezing of states, and thus
asymmetry between pre- and post-bounce fluctuations.

Crucial question is how strong correlations can become in high
energy regime.

Note: Correlations so far mostly ignored in numerical studies.
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Inhomogeneity

Spatial geometry subdivided if not fully homogeneous:
holonomy corrections shrink, inverse corrections grow, more
quantum back-reaction. Generically, all corrections significant.

Patch size ℓ0 (coordinate length), total volume V0. Number of
patches: N = V0/ℓ

3
0.

Holonomy corrections when curvature ȧ ∼ c∗ = (N /V0)
1/3.

Inverse metric corrections large when a ∼ a∗ = (N /V0)
1/3ℓP.

(For a ∼ a∗, physical patch density N /a3V0 = (a∗/a)
3/ℓ3P near

one per Planck volume.)

Classical range: ȧ≪ c∗, a≫ a∗.
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Inhomogeneity

Spatial geometry subdivided if not fully homogeneous:
holonomy corrections shrink, inverse corrections grow, more
quantum back-reaction. Generically, all corrections significant.

Patch size ℓ0 (coordinate length), total volume V0. Number of
patches: N = V0/ℓ

3
0.

Holonomy corrections when curvature ȧ ∼ c∗ = (N /V0)
1/3.

Inverse metric corrections large when a ∼ a∗ = (N /V0)
1/3ℓP.

(For a ∼ a∗, physical patch density N /a3V0 = (a∗/a)
3/ℓ3P near

one per Planck volume.)

Classical range: ȧ≪ c∗, a≫ a∗.

Note: correct scaling behavior, no “gauge artefacts”
(V0-dependence). But only if role of N recognized.
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Refinement and phenomenology

N may itself depend on a if discrete structure refined during
expansion. Gives rise to different models (“µ0”: N = const; “µ̄”:
N ∝ a3V0). If power law: N ∝ a−6x with −1/2 < x < 0
generically according to dynamics of loop quantum gravity.

x = 0: No refinement, just enlarge lattice during expansion;
late-time problems.

x = −1/2: Maximum refinement, no further excitations of spatial
“atoms.”
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Refinement and phenomenology

N may itself depend on a if discrete structure refined during
expansion. Gives rise to different models (“µ0”: N = const; “µ̄”:
N ∝ a3V0). If power law: N ∝ a−6x with −1/2 < x < 0
generically according to dynamics of loop quantum gravity.

x = 0: No refinement, just enlarge lattice during expansion;
late-time problems.

x = −1/2: Maximum refinement, no further excitations of spatial
“atoms.”

Surprisingly strong consequences! Use phenomenology to see
how quantum gravity dynamically refines its discrete space.

Recent examples: Upper bound N /a3V0 < 3/ℓ3P from BBN.
[with R. Das, R. Scherrer]

Characteristic blue-tilt for tensor modes, enhanced if x > −1/2.
For x = −1/2: small correction of size 8πGρℓ2P. [A. Barrau, J. Grain]
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Covariance

Crucial for observational contact: correction terms for evolution
of gauge invariant perturbations. Effective equations for
background available, may try “classical/quantum field theory on
classical/quantum background.”
But pressing consistency: are symmetries well-respected to
ensure consistent equations of motion for gauge invariant
quantities?
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Covariance

Crucial for observational contact: correction terms for evolution
of gauge invariant perturbations. Effective equations for
background available, may try “classical/quantum field theory on
classical/quantum background.”
But pressing consistency: are symmetries well-respected to
ensure consistent equations of motion for gauge invariant
quantities?

Quantum commutator [Ĥ[N ], Ĥ [M ]] of correct form?

Which semiclassical state for effective Hamiltonian 〈Ĥ〉?

Can be handled with effective equations and effective
constraints.

Properties of dynamical coherent states determined order by
order in semiclassical expansion (just like interacting vacuum in
perturbative quantum field theory).
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Gravitational waves

Example: Propagation of gravitational waves compared to light.
Hamiltonian (for inverse volume correction)

HG =
1

16πG

∫

Σ
d3xα(Ea

i )
Ec

jE
d
k

√

|detE|
(

ǫi
jkF i

cd − 2(1 + γ2)Kj
[c
Kk

d]

)

implies linearized wave equation

1

2

[

1

α
ḧi

a + 2
ȧ

a

(

1 − 2adα/da

α

)

ḣi
a − α∇2hi

a

]

= 8πGΠi
a

for tensor mode hi
a on cosmological background with scale

factor a and source-term Πi
a.

Dispersion relation for gravitational waves:

ω2 = α2k2

α > 1 from perturbative corrections: super-luminal?
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Causality

Compare with electrodynamics, Hamiltonian:

HEM =

∫

Σ
d3x

[

αEM(qcd)
2π√
q
EaEbqab + βEM(qcd)

√
q

16π
FabFcdq

acqbd

]

wave equation

∂t

(

α−1
EM∂tAa

)

− βEM∇2Aa = 0

dispersion relation
ω2 = αEMβEMk

2

Also “super-luminal” compared to classical speed of light.

Anomaly-freedom:
α2 = αEMβEM

from effective constraint algebra, physically not super-luminal.
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Cosmology

Analysis of constraints and derivation of systematic perturbation
theory under development.
[with Golam Hossain, Mikhail Kagan, David Mulryne, Nelson Nunes, Juan Reyes,

Subramanian Shankaranarayanan, Artur Tsobanjan]

Indirect effects of atomic space-time: small individual
corrections even at high energies, can add up coherently.
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Cosmology

Analysis of constraints and derivation of systematic perturbation
theory under development.
[with Golam Hossain, Mikhail Kagan, David Mulryne, Nelson Nunes, Juan Reyes,

Subramanian Shankaranarayanan, Artur Tsobanjan]

Indirect effects of atomic space-time: small individual
corrections even at high energies, can add up coherently.

−→ cosmology, high energy density, long evolution

−→ astro-particles, high energies from distant sources.

Different quantum effects occur and need to be disentangled.
Reliable equations for most of them will be available soon.
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Conclusions

Fundamental physics of loop quantum gravity can be bridged
with phenomenological scenarios.

(Weak) observational constraints already exist for the underlying
discrete structure: may provide indirect evidence for atomic
space.

Able to resolve problems such as singularity issue in some
models, others under investigation.

Direct cosmological applications and evolution of
inhomogeneities through a bounce require consistent evolution
equations of observables, should be available soon.
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