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Quantum Field Theory in Curved Spacetime

Quantum field theory in curved spacetime (QFTCS) is a

theory wherein matter is treated fully in accord with the

principles of quantum field theory, but gravity is treated

classically in accord with general relativity. It is not

expected to be an exact theory of nature, but it should

provide a good approximate description in circumstances

where the quantum effects of gravity itself do not play a

dominant role. Despite its classical treatment of gravity,

QFTCS has provided us with some of the deepest insights

we presently have into the nature of quantum gravity.



What Are the Essential Elements of

Quantum Field Theory?

Quantum field theory (QFT) as usually formulated

contains many elements that are very special to

Minkowski spacetime. But we know from general

relativity that spacetime is not flat, and, indeed there are

very interesting QFT phenomena that occur in contexts

(such as in the early universe and near black holes) where

spacetime cannot even be approximated as nearly flat.

It is a relatively simple matter to generalize classical field

theory from flat to curved spacetime. That is because

there is a clean separation between the field equations

and the solutions. The field equations can be



straightforwardly generalized to curved spacetime in an

entirely local and covariant manner. Solutions to the field

equations need not generalize from flat to curved

spacetime, but this doesn’t matter for the formulation of

the theory.

In QFT, “states” are the analogs of “solutions” in

classical field theory. However, properties of states—in

particular, the existence of a Poincare invariant vacuum

state—are deeply embedded in the usual formulations of

QFT in Minkowski spacetime. For this reason and a

number of other reasons, it is highly nontrivial to

generalize the formulation of QFT from flat to curved

spacetime.



Wightman Axioms in Minkowski Spacetime

• The states of the theory are unit rays in a Hilbert

space, H, that carries a unitary representation of the

Poincare group.

• The 4-momentum (defined by the action of the

Poincare group on the Hilbert space) is positive, i.e.,

its spectrum is contained within the closed future

light cone (“spectrum condition”).

• There exists a unique, Poincare invariant state (“the

vacuum”).

• The quantum fields are operator-valued distributions

defined on a dense domain D ⊂ H that is both



Poincare invariant and invariant under the action of

the fields and their adjoints.

• The fields transform in a covariant manner under the

action of Poincare transformations.

• At spacelike separations, quantum fields either

commute or anticommute.



Difficulties with Extending the Wightman

Axioms to Curved Spacetime

• A generic curved spacetime will not possess any

symmetries at all, so one certainly cannot require

“Poincare invariance/covariance” or invariance under

any other type of spacetime symmetry.

• There exist unitarily inequivalent Hilbert space

constructions of free quantum fields in spacetimes

with a noncompact Cauchy surface and (in the

absence of symmetries of the spacetime) none

appears “preferred”.

• In a generic curved spacetime, there is no “preferred”

choice of a vacuum state.



• There is no analog of the spectrum condition in

curved spacetime that can be formulated in terms of

the “total energy-momentum” of the quantum field.

Thus, of all of the Wightman axioms, only the last one

(commutativity or anticommutativity at spacelike

separations) generalizes straightforwardly to curved

spacetime.



Nonexistence of a “Preferred Vacuum State”

and Notion of “Particles”

For a free field in Minkowski spacetime, the notion of

“particles” and “vacuum” is intimately tied to the notion

of “positive frequency solutions”, which, in turn relies on

the existence of a time translation symmetry. As shown

by Ashtekar and Magnon (Proc. R. Soc. Lond. A 346,

375 (1975)) these notions of a (unique) “vacuum state”

and “particles” can be straightforwardly generalized to

(globally) stationary curved spacetimes, but not to

general curved spacetimes.

For a free field on a general curved spacetime, one has

the general notion of a quasi-free Hadamard state (i.e.,



vacuum) and a corresponding notion of “particles”.

However, these notions are highly non-unique—and,

indeed, for spacetimes with a non-compact Cauchy

surface different choices of quasi-free Hadamard states

give rise, in general, to unitarily inequivalent Hilbert

space constructions of the theory.

In my view, the quest for a “preferred vacuum state” in

quantum field theory in curved spacetime is much like

the quest for a “preferred coordinate system” in classical

general relativity. In 90+ years of experience with

classical general relativity, we have learned that it is

fruitless to seek a preferred coordinate system for general

spacetimes, and that the theory is best formulated



geometrically, wherein one does not have to specify a

choice of coordinate system to formulate the theory.

Similarly, it is my view that in 40+ years of experience

with quantum field theory in curved spacetime, we have

learned that it is fruitless to seek a preferred vacuum

state for general spacetimes, and that the theory is best

formulated in terms of the algebra of local field

observables, wherein one does not have to specify a choice

of state (or representation) to formulate the theory.



Overcoming These Difficulties

• The difficulties that arise from the existence of

unitarily inequivalent Hilbert space constructions of

quantum field theory in curved spacetime can be

overcome by formulating the theory via the algebraic

framework. The algebraic approach also fits in very

well with the viewpoint naturally arising in quantum

field theory in curved spacetime that the

fundamental observables in QFT are the local

quantum fields themselves. A key reference proposing

the use of the algebraic approach for quantum field

theory in curved spacetime is Ashtekar and Magnon,

Proc. R. Soc. Lond. A 346, 375 (1975).



• The difficulties that arise from the lack of an

appropriate notion of the total energy of the

quantum field can be overcome by replacing the

spectrum condition by a “microlocal spectrum

condition” that restricts the singularity structure of

the expectation values of the correlation functions of

the local quantum fields.

• Many aspects of the requirement of Poincare

invariance of the quantum fields can be replaced by

the requirement that the quantum fields be locally

and covariantly constructed out of the metric.



The Algebraic Approach

In the algebraic approach, instead of starting with a

Hilbert space of states and then defining the field

observables as operators on this Hilbert space, one starts

with an algebra, A, of field observables. A state, ω, is

simply a linear map ω : A → C that satisfies the

positivity condition ω(A∗A) ≥ 0 for all A ∈ A. The

quantity ω(A) is interpreted as the expectation value of

the observable A in the state ω.

If H is a Hilbert space which carries a representation, π,

of A, and if Ψ ∈ H then the map ω : A → C given by

ω(A) = 〈Ψ|π(A)|Ψ〉



defines a state on A.

Conversely, given a state, ω, on A, we can use it to define

a (pre-)inner-product on A by

(A1, A2) = ω(A∗

1A2) .

By factoring by zero-norm vectors and completing this

space to get a Hilbert space H which carries a natural

representation, π, of A. The vector Ψ ∈ H corresponding

to I ∈ A then satisfies ω(A) = 〈Ψ|π(A)|Ψ〉 for all A ∈ A.

Thus, every state in the algebraic sense corresponds to a

state in the usual Hilbert space sense. However, one may

simultaneously consider all states arising in all Hilbert

space constructions of the theory without having to make



a particular choice of representation at the outset. It is

particularly important to proceed in this manner in, e.g.,

studies of phenomena in the early universe, so as not to

prejudice in advance which states might be present.



Microlocal Spectrum Condition

Microlocal analysis provides a refined characterization of

the singularities of a distribution by examining the decay

properties of the Fourier transform of the distribution

(after it has been localized near point x). It therefore

provides a notion of the singular points and directions

(x, k) of a distribution, α, called the the wavefront set,

denoted WF(α). It provides an ideal way of

characterizing the singular behavior of the distributions

ω[Φ1(x1) . . . Φn(xn)] as being of a “locally positive

frequency character” even in situations where there is no

natural global notion of “positive frequency” (i.e., no

global notion of Fourier transform).



Local and Covariant Fields

We wish to impose the requirement that quantum fields

Φ in an arbitrarily small neighborhood of a point x “be

locally and covariantly constructed out of the spacetime

geometry” in that neighborhood. In order to formulate

this requirement, it is essential that quantum field theory

in curved spacetime be formulated for all (globally

hyperbolic) curved spacetimes—so that we can formulate

the notion that “nothing happens” to the fields near x

when we vary the metric in an arbitrary manner away

from point x.

Suppose that we have a causality preserving isometric

embedding i : M → O′ ⊂ M ′ of a spacetime (M, gab) into



a region O′, of a spacetime (M ′, g′

ab).

(M, g )ab

ab
)(M’, g’

i

O’

We require that this embedding induce a natural

isomorphism of the quantum field algebra A(M) of the



spacetime (M, gab) and the subalgebra of the quantum

field algebra A(M ′) associated with region O′. We

further demand that under this isomorphism, each

quantum field Φ(f) on M be taken into the

corresponding quantum field Φ(i∗f) in O′.

What does this have to do with Poincare covariance? We

can isometrically embed all of Minkowski spacetime into

itself by a Poincare transformation. The above condition

provides us with an action of the Poincare group on the

field algebra of Minkowski spacetime and also requires

each quantum field in Minkowski spacetime to transform

covariantly under Poincare transformations. The above

condition contains much of the essential content of



Poincare invariance, but is applicable to arbitrary curved

spacetimes without symmetries.



Generalizing the Wightman Axioms to Curved Spacetime

• The states of the theory are unit rays in a Hilbert

space, H, that carries a unitary representation of the

Poincare group. Replaced by formulating theory via

algebraic approach and local and covariant field

condition.

• The 4-momentum (defined by the action of the

Poincare group on the Hilbert space) is positive, i.e.,

its spectrum is contained within the closed future

light cone (“spectrum condition”). Replaced by

microlocal spectrum condition.

• There exists a unique, Poincare invariant state (“the



vacuum”).

• The quantum fields are operator-valued distributions

defined on a dense domain D ⊂ H that is both

Poincare invariant and invariant under the action of

the fields and their adjoints. Replaced by GNS

construction in algebraic approach and local and

covariant field condition.

• The fields transform in a covariant manner under the

action of Poincare transformations. Replaced by

local and covariant field condition.

• At spacelike separations, quantum fields either

commute or anticommute. OK in the first place.



What is the appropriate replacement in curved spacetime

of the requirement that there exist a Poincare invariant

state in Minkowski spacetime?



The Operator Product Expansion

An operator product expansion (OPE) is a short-distance

asymptotic formula for products of fields near point x in

terms of fields defined at x. For example, for a free

Klein-Gordon field in curved spacetime, we have

φ(x)φ(y) = H(x, y)1 + φ2(x) + . . .

where H is a locally and covariantly constructed

Hadamard distribution and “. . . ” has higher scaling

degree than the other terms (i.e., it goes to zero more

rapidly in the coincidence limit). An OPE exists for free

fields in curved spacetime and Hollands has shown that it

holds order-by-order in perturbation theory for



renormalizable interacting fields in curved spacetime.

However, one would not expect an OPE to exist for field

theories that are not renormalizable or are not

asymptotically free. We believe that the existence of an

operator product expansion satisfying certain properties

should be elevated to the status of a fundamental

property of quantum fields. The requirement that such

an operator product expansion exist appears to provide a

suitable replacement for the requirement of existence of a

Poincare invariant state! In particular, the distributional

coefficients of the identity element in OPE expansions

play much of the role played by “vacuum expectation

values” in Minkowski spacetime quantum field theory.



Our Present Viewpoint on QFT

The background structure, M, of quantum field theory

(in curved spacetime) is the spacetime (M, gab), together

with choices of time orientation, spacetime orientation,

and spin structure. For each M, we have an algebra

A(M) of local field observables. In traditional algebraic

approaches to QFT, A(M) would contain the full

information about the QFT. However, in our approach,

A(M), is essentially nothing more than the free

*-algebra generated by the list of quantum fields φ(i)(f)

(including “composite fields”), though it may be factored

by relations that arise from the OPE.

All of the nontrivial information about the QFT is



contained in its OPE, i.e., formulae of the form

φ(i1)(x1) · · ·φ
(in)(xn) ∼

∑

(j)

C
(i1)...(in)
(j) (x1, . . . , xn; y) φ(j)(y)

for all i1, . . . , in, which hold as asymptotic relations as

{x1, . . . , xn} → y. The distributions

C
(i1)...(in)
(j) (x1, . . . , xn; y) are required to satisfy a list of

axioms:

• Locality and Covariance

• Identity element

• Compatibility with the ⋆-operation

• Causality (commutativity/anti-commutativity at

spacelike separations)



• Dimension and Scaling Degree

• “Associativity”

• Spectrum condition

• Analytic dependence upon the metric



Some Key Results

A spin-statistics theorem has been proven. It takes the

same form as in Minkowski spacetime axiomatic quantum

field theory, i.e., commutation at spacelike separations is

inconsistent for half-integral spin fields, and

anti-commutation at spacelike separations is inconsistent

for integer spin fields.

A PCT theorem has been proven. It takes a rather

different form as compared with Minkowski spacetime

axiomatic quantum field theory, since P and T do not

correspond to isometries:

PCT Theorem: Let M be a background structure, i.e., a

spacetime (M, gab), together with choices of time



orientation and spacetime orientation. Let M̄ denote the

same spacetime (M, gab) with the same choice of

spacetime orientation, but the opposite choice of time

orientation (and a corresponding choice of spin

structure). Then A(M) and A(M̄) are naturally

(anti-linearly) *-isomorphic, and the dual action of this

isomorphism yields an isomorphism of S(M̄) and S(M).



Outlook

The attempt to generalize the axiomatic formulation

QFT to curved spacetime—where no symmetries are

present and no “preferred vacuum state” exists—has led

us to a viewpoint wherein the existence of an OPE is

elevated to a fundamental status, and the OPE itself

contains all of the nontrivial information about the

quantum field theory. It thereby gives a perspective that

is much closer in nature to classical field theory, in that

the entire content of the theory is expressed by local

relations satisfied by the fields. Symmetries and

“preferred states” play no role whatsoever in the

formulation of the theory.



Many of the well known difficulties with the perturbative

construction of interacting quantum field theory all

appear to trace back to the non-analytic dependence of

the vacuum state on the coupling parameters. It would

be interesting to re-examine the convergence of

perturbation theory within our framework.


