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Happy birthday Abhay !!



It is a very exciting time for Loop Quantum Gravity

• Applications

– Loop Quantum Cosmology

– Quantum black holes

• Theory

– Barret-Crane vertex corrected: novel vertex amplitude

– Correct recovery of the classical limit

– Covariant (spinfoam) and canonical (spin networks) finally united

– Scattering amplitudes of gravitons are beginning to be computed
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But there are no “particles” in quantum gravity !



A strange disagreement



From particle physics:

1. Weinberg’s definition and construction of QFT is based on the notion of

particle.

2. Quantum Mechanics + Special Relativity = particles: The Hilbert space H
carries a representation of the Poincaré group; its irreducible components,

labelled by mass and spin (Wigner), are one-particle states. (Are they?)

3. Particles are the quanta of the (free) field : the modes φ(k) are oscillators:

their energy is quantized. A particle is a quantum superposition of

one-quantum excitations of these modes: | f 〉 =
R
dk f(k) | k 〉 , where

| k 〉 = φ(k) | 0 〉 is the first excitation of the mode k.

4. Further complications: interacting theories, QCD... Other definitions of

particles (poles in the green function...)

5. Detectors (CERN detectors, photoelectric cells, scintillators...) detect

particles.

Unquestionable conclusion: matter is made out of particles.



From the general relativity community:

1. In the real world, spacetime is curved → Wigner argument does not apply.

2. Unruh effect → already in flat space, a (accelerated) detector “detects

particles” even with the field in the vacuum.

3. The mode decomposition depends on the (arbitrary) choice of a foliation

→ the notion of “particle” as excitations of modes is physically

meaningless.

4. Bob Wald: QFT must be interpreted in terms of local observables (ex: the

integral of energy-momentum-tensor components over a finite region), not

in terms of particles.

5. Paul Davies: “ Particles do not exist! ”

Unquestionable conclusion:

particles are not the appropriate way to describe quantum matter.



Who is right?

If the relativists are right, how come particle detectors detect particles (even if

real spacetime is curved)? What is the object detected by a particle detector in

curved spacetime? Whatever it is, isn’t it still a particle? How to describe it

theoretically?

If the particle physicists are right, what are the true particle states in a curved

spacetime? What are the true particle states in quantum gravity?



A strictly related problem:

A particle is a local or a global object?

1. Particle states in Fock space are global objects: they aren’t eigenstates of

any local operators.

2. But particle detectors have finite size, and see particles as local objects.

3. Example: the Fock vacuum is the state with no particles, but any finite

size detector do detects particles in the Fock vacuum.



Solution:

There exist two different kinds of states in QFT:

global (particle) states and local (particle) states.

They are almost the same, but not precisely the same.

Distinguishing the two brings clarity to the above questions.



More precisely:

1. In flat space QFT:

– global states are in the standard Fock space basis (eigenstates of the

particle number operator).

– local states are the eigenstates of the operators representing

measurements by finite-size detectors.

2. Global states converge weakly (but not in norm!) to local states, when

detectors are large.

3. Global states (used in QFT textbooks) are very good approximations to

the true states detected in the real world, which are the local states.

4. In curved spacetime, global states do not exist anymore. But, local states

still exist. They are eigenstates of local operators with discrete spectrum

(such as the energy of a region), describing localized measurements. They

have virtually the same properties as the textbook QFT particle states, for

large detectors.

In other words: everybody is right, but both points of view miss

something.



First step: two oscillators

   

! ! ! !    !    qL   !! ! ! !         qR
H = HL + HR + V

=
p2L + ω2 q2L

2
+
p2R + ω2 q2R

2
+ λ qLqR,

A basis in H:
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In particular:

|0〉loc ≡ |0, 0〉loc

is a state with no quanta on L and no quanta on R. And

|L〉loc ≡ |1, 0〉loc

is a state with “one quantum on the L oscillator”.
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Another basis in H:

Ha,b|na, nb〉glob = ~ωa,b(na,b +
1

2
) |na, nb〉glob

In particular:

|0〉glob ≡ |0, 0〉glob
is a state with no quanta either mode. A generic “one particle state” in this

basis

|ψ〉glob = α |1, 0〉glob + β |0, 1〉glob
In particular

|L〉glob :=
|1, 0〉glob + |0, 1〉glob√

2

is a quantum oscillation maximally concentrated on the L oscillator.



What is the relation between |L〉loc and |L〉glob ? They are both states where

the Left oscillator is excited, but they are different:

〈qL, qR|L〉loc =
q
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But not very different: If λ is small, ωa ∼ ωb ∼ ω and the two states are very

similar. In fact:

loc〈L|L〉glob = 1−O(λ2).

Also

|L〉glob = |L〉loc −
λ

√
8ω2

|2, 1〉loc +O(λ2).

The two states |L〉glob and |L〉loc are both “one-particle states” in

which the “particle” is concentrated on the oscillator qL, but they are

distinct states.



|L〉glob: quantum excitation of global oscillation modes. Not an eigenstate of

local operators. The qL variable is excited, but it is also correlated with the qR
variable.

|L〉loc: quantum excitation of a local variable. Eigenstate of local operators.

The qL variable is excited, and it is not correlated with the qR variable.

Notice: if I measure if the qL variable is excited and find out it is (say I measure

HL and obtain the first excited energy level), I project the state on |L〉loc.



Second step: chain of oscillators
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Normal modes Q = (Qa), a = 1, . . . , n are given by Q = U (n)q, where

U
(n)
ai =

q
2
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sin
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aiπ
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”
. A basis that diagonalizes H is given by the states

|n〉 = |n1, . . . nn〉 with na quanta in the a-th normal mode. The number

operator is

N |n〉 =

 
nX
a=1

na

!
|n〉.

one-particle states: |a〉 = |0, . . . , 1, . . . , 0〉. The state

|i〉glob =

nX
a=1

(U(n))−1
ia |a〉

is the one-particle state maximally concentrated on the i-th oscillator.
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Local states

H = HL +HR + V

Choose a basis that diagonalizes HL and HR. For this we need the eigenmodes

of HL alone. |nL1 , ..., nLnL ;nR1 , ..., n
R
nR
〉. Let |a〉loc = |0, ..., 1, ...0; 0, ..., 0〉 be the

excitations of the a’th left eigenmode. Then the state

|i〉loc =

n1X
a=1

(U (nL))−1
ia |a〉loc

is the local one-particle state, associated to the region L, with the particle on

the i-th oscillator.



|i〉glob: quantum excitation of global oscillation modes. Not an eigenstate of

any local operator. The qi variable is excited, and it is also (weakly) correlated

with all qi variables.

|i〉loc: quantum excitation of a the modes of the L region. The qi variable is

excited, and it is correlated only with the variables in L. It is an eigenstate of

observables in the region L.

If I make a measurement with an apparatus having only access to variables in

L, I can project the state on |i〉loc, but not on |i〉glob .



Is it still true that |i〉glob and |i〉loc are “very similar”? Yes, but:

⇒ Surprisingly, we still have

glob〈i|i〉loc ∼ 1−
λ2

16

for any n and nL: the scalar product does not go to 1 when the regions become

large.

⇒ However, the expectation value of local operators is the same for |i〉glob and

|i〉loc when the regions become large. For instance

glob〈i|qiqj |i〉glob − loc〈i|qiqj |i〉loc → 0

at every order in λ when n, nL →∞.



Third step: field theory

Scalar massive field theory in 1+1 dimension. Fix a finite region L.

Define the (usual) global one-particle states |f〉glob, where f(x) is a

compact-support function, by

|f〉glob =

Z
dk f̃(k)|k〉,

where k are the eigenmodes of the field.

Define the local one-particle states |f〉loc, where f(x) is a compact-support

function, by

|f〉loc =

Z
dk f̃(k)|k〉,

where k are the eigenmodes of the L region.

Then again, local and global states converge weakly with the size of the region:

the expectation value of local operators is the same for |f〉glob and |f〉loc when:

the size of the regions is large with respect to the Compton wavelength and the

support of f is away from the boundary (exponential convergence). In

particular

glob〈0|φ(x, t)φ(x′, t′)|0〉glob − loc〈0|φ(x, t)φ(x′, t′)|0〉loc → 0



Interpretation

Particles detected by real measuring apparatus are local objects. They are best

represented by QFT states that are eigenstates of local operators. I have

defined these states, and denoted them local particle states.

This is not what is usually done in QFT, where, instead, we represent the

particles observed in particle detectors by means of a different set of states:

global particle states such as the n-particle Fock states.

Global particle states provide a good approximation to local particle states.

The convergence is not in the Hilbert space norm, but in a weak topology given

by local observables.



Answers to the questions posed

– Local or global?: Local.

The global properties of the particle states are an artifact of an approximation

taken, not an intrinsic property of physically observed particles.

– Can the notion of particle be utilized in a curved context? Yes.

Particles can be understood as eigenstates of local operators, with no reference

to global features.

On a curved spacetime, a detector that measures the energy HL in a finite

region of space L, can detects local particle states which are eigenstates of HL.

These states have a particle-like structure.

→ global particle states do not generalize, but local particle states, that truly

describe what we measure in a bubble chamber, do.

– Can we view QFT, in general, as a theory of particles? Yes, but.

Global particle states are defined once and for all in the theory; while each

finite size detector defines its own bunch of local particle states.

The world is far more subtle than a bunch of particles that interact



Will Abhay agree?



Will Abhay agree?

Thanks for everything, Abhay !


