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Abstract

A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed
by combining two sets of detailed results: i) resolution of the Schwarzschild singularity using quan-
tum geometry methods [1, 2]; and ii) time-evolution of black holes in the trapping and dynamical
horizon frameworks [3, 4, 5, 6]. Quantum geometry effects introduce a major modification in the
traditional space-time diagram of black hole evaporation, providing a possible mechanism for re-
covery of information that is classically lost in the process of black hole formation. The paradigm
is developed directly in the Lorentzian regime and necessary conditions for its viability are dis-
cussed. If these conditions are met, much of the tension between expectations based on space-time

geometry and structure of quantum theory would be resolved.

PACS numbers: 0460P, 0470D



Global event horizons do not exist in qguantum
gravity:

FIG. 2: Space-time diagram of black hole evaporation where the classical singularity is resolved
by quantum geometry effects. The shaded region lies in the ‘deep Planck regime’ where geome-
try is genuinely quantum mechanical. H is the trapping horizon which is first space-like (i.e., a
dynamical horizon) and grows because of infalling matter and then becomes time-like (i.e., a time-
like membrane) and shrinks because of Hawking evaporation. In region I, there is a well-defined

semi-classical geometry.



String theory predicts that quantum gravity
IS holographic:

Physics in a region is completely described
by fundamental degrees of freedom living on
the boundary.



AdS/CFT Correspondence

(Maldacena, 1997)

AdS: Anti de Sitter spacetime

CFT: Ordinary (nongravitational) guantum field
theory that is conformally invariant.

The AdS/CFT correspondence states that string
theory on spacetimes that asymptotically
approach AdS x K is completely equivalent to a
CFT living on the boundary.



Advantages of using AdS/CFT:

Maps the problem of spacetime singularities
Into a problem in ordinary field theory

Disadvantages of using AdS/CFT:

a)The world Is not asymptotically AdS
b)It has been difficult to describe observers
falling into a black hole in the CFT
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D-brane tutorial

D-branes are extended objects in 10D
string theory.

They carry a charge, and there is no
force between two D-branes.

Open strings end on D-branes.

A stack of N D3-branes has a near
horizon geometry AdS: x S°.



Simple example

Consider the following static black hole

d2
dszz—(fr'Q—l) dt? | 2T 1 | r2do?
r< —

where do?is the metric on a unit 3D
hyperboloid, compactified to finite volume.

This metric is locally equivalent to AdS:. It Is
a higher dimensional analog of the 3D BTZ
black hole.



In Minkowski spacetime, the metric inside the
light cone, in Milne coordinates, is:

ds? = - dt? + t* dc?

One can identify points so that do? becomes
compact.

expanding cone

collapsing cone



AdS can be written in Poincare coordinates

ds® = ro(—dt; + t2do?)

One can make a similar identification on each

Minkowski slice.

o = 0
Poincare
horizon

/
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t,=0
— singularity




What Is the relation between the black hole and
the Poincare patch?




What Is the relation between the black hole and
the Poincare patch?




What Is the relation between the black hole and
the Poincare patch?




Since we know how to describe physics In
the Poincare patch, we can describe physics
Inside the horizon.

Moreover, we can easily describe infalling
observers, since a D-brane stays at constant
Poincare radius and this crosses the black
hole horizon.



(A) (B)

Green line Is motion of a D-brane
Blue lines are

A)Poincare time slices
B)Schwarzschild time slices



The natural metric on the boundary at
infinity in the Poincare coordinates is

the cone.

The natural metric in the black hole
coordinates Is a static cylinder.

These are related by a conformal
transformation:

(1/t?) [- dt? + t* do?] = - dn? + do? t=+ e

The collapsing and expanding cone each
become an infinite static cylinder.



Metric In Poincare coordinates:

2 2 2 . ,2 4.9 drz%
dS — Tp(—dtp -+ tde' ) —+ ﬁ
p

Metric in Schwarzschild coordinates:

ds® = — (7"2 — 1) dt® - r?do?



The natural metric on the boundary at
infinity in the Poincare coordinates is

the cone.

The natural metric in the black hole
coordinates Is a static cylinder.

These are related by a conformal
transformation:

(1/t?) [- dt? + t* do?] = - dn? + do? t=+ e

The collapsing and expanding cone each
become an infinite static cylinder.



Dual CFT description

If the bulk spacetime is asymptotically AdS; x S>,
the dual CFT is U(N) super Yang-Mills (SYM).

In the Poincare patch, the SYM naturally lives on
the collapsing cone.

This describes physics inside the horizon before
the singularity is reached.



SYM has six scalars which are N x N
matrices.

The static D-brane in Poincare coordinates
IS described by setting one of the scalar
eigenvalues to a constant ¢ = ¢,.

This constant value corresponds to the
radial position of the brane: ¢, =r,.



Description in terms of SYM on static cylinder:

The SYM scalars couple to the curvature of
space via R¢?. The static cylinder:

ds? = - dn? + do?

has negative curvature, so the scalars feel a

potential V(¢) = - ¢2. The solution ¢ = 0 is
unstable.

Note: In some cases, only the zero mode of ¢ IS
unstable. Inhomogeneous modes have m? > 0.




Under conformal transformation from cone to
static cylinder, ¢s = t, ¢,. The solution ¢ = ¢,
on the collapsing cone corresponds to
b = ¢y em on the static cylinder.

V




Equating the area of the hyperbolic space in
Poincare coordinates and black hole
coordinates yields r = t; r,, since
dr?
2 2 2 2 2 p
ds® = ’I“p(—dtp + tde' ) + ﬁ
p
We know ¢, =r,, SO ¢s=1, ¢, =T.

The scalar field again gives the radial position
of the D-brane even in Schwarzschild
coordinates. The singularity corresponds to ¢,
= 0.



Il. Implications for
the singularity




Consider a static spherical shell of D-branes (in
Poincare coordinates).

In the black hole interpretation, the shell
collapses to form the hyperbolic black hole.

Replace with shell

flat spacetime

\




Initially,
eigenva
diagona

the SYM scalars are diagonal with
ues coming in from infinity. The off
modes are very massive. As the

eigenva

ues approach zero, the off diagonal

modes become excited. The eigenvalues are

trapped

Large K
shell of |

D-branes

near zero. (Kofman et. al., 2004)

Spacetime picture:

‘‘‘‘‘

’ K "7, Open

> \ . strings

, excited



Since SYM is strongly coupled, you produce
a complicated excited state involving all N2
degrees of freedom.

Locality probably breaks down:

Away from the singularity, locality can be
measured by scalar eigenvalues.

Near the singularity, all of the eigenvalues
Interact strongly with off-diagonal modes and
with each other, the D-brane probes are no
longer good definitions of any geometry.



If N is infinite, the eigenvalues will be
trapped forever. This describes the formation
of a classical black hole.

If N Is large but finite, eigenvalues will be
trapped for atime T ~ e°N,

This Is Hawking evaporation of D-branes
from the black hole.

(Finite N means quantum gravity important.
Hyperbolic black holes have positive specific
heat. Only evaporate by emitting D-branes.)



What is final spacetime picture? It is NOT just a
smoothing out of the spacetime near the

singularity.

not correct

The branes come out In finite
time in the SYM on the cylinder.

The branes emerge randomly,
not as a coherent shell.



Nongeometric
region \S
S

Standard picture Picture motivated by

of evaporating dual field theory
black hole in AdS



Key lesson

Event horizons don’t exist in quantum gravity
(Just like Ashtekar and Bojowald said!)

Event horizons require global causal relations
which are not defined in spacetimes with
nongeometric regions. (Trapped surfaces and
apparent horizons will still exist.)



1. Generalizations



A hyperbolic black hole can have different
MassSes: (Emparan)

2
2 2 M 2 dr 232
ds ——(r—l—r—Q)dt A _ﬂwr'da
?"2

There are three cases:

u > 0: black hole with spacelike singularity
-1/4 < y <0: black hole with timelike singularity
u < -1/4:. naked singularity



These cases are correlated with the
possible motion of the scalars:

V(¢)

- - - ©) For E > E_,
0 o classical evolution is
modified by
guantum corrections

E=E
corresponds to

(: (A) M= -1/4




Motion of shell in classical spacetimes

A<O

Timelike
boundary

(A)

Can’t form a
naked singularity
since the shell
bounces

(B)

This case Is
currently
under study

A<0

(©)



Conclusions

Can describe formation of a hyperbolic black
hole by collapsing a shell of D-branes.

The physics near the singularity is governed
by the SYM with small ¢. The problem of
singularities is no longer that the theory
breaks down but simply that it is hard to
calculate.

The event horizon is not well defined In the
guantum theory.

The qualitative behavior of hyperbolic black
holes with different mass is correlated with
behavior of the scalars in the field theory.
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