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INTRODUCTION

There is by now extensive literature addressing the problem of time in Classical 

and Quantum Gravity. 

The heart of the problem lies in the fact that Einstein gravity is a fully 

constrained system whose Hamiltonian vanishes, thus  observable quantities 

are those that commute with the constraints, e.g. Dirac Observables, and 

therefore they do not evolve. 

I will discuss here two approaches to this problem. 

Both have in common their relational character. In fact, one of the basic ingredients in 

the different proposals to describe evolution is the use of relations between 

different degrees of freedom in the theory .

The first approach is based on the concept of relational or evolving Dirac observables. 

Bergmann, DeWitt, Rovelli, Marolf. 

There is a second type of approach that I would like to mention in this talk that 

is the conditional probabilities approach proposed by Page and Wootters. 



I shall try to convince you that both approaches present problems and do 

not provide a completely satisfactory solution to the issue of the evolution. 

Problems are particularly acute when we try to compute propagators or assign 

probabilities to histories. 

Here we are going to propose a marriage of these approaches that exploits the 

advantages of both.

OUTLINE

1) Evolving Dirac Observables in totally constrained systems.

2) Page Wootters conditional probabilities.
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1) Evolving Dirac Observables in totally constrained systems:
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In the case of GR the constraints are first class
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The Hamiltonian vanishes: the

generator of the evolution also 

generates gauge transformations

Dirac observables are gauge invariant quantities
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Therefore, they are constants of the motion.



The issue of time: If the physically relevant quantities in 

totally constrained systems as general relativity are constants

of the motion, how can we describe the evolution?

1) Gauge fixing:
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2) Evolving observables: Bergmann, DeWitt, Rovelli, Marolf 
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For instance,  for the relativistic particle.

Two independent observables:

Notice that one needs to assume 

that there are variables as         that are physically 

observable, even though they are not Dirac observables
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The Quantum Evolving Observables.

Let us consider the elementary case of a non-relativistic free particle

with self-adjoint  Dirac observables

And eigenvectors:

which are solutions of the constraint.

It is now possible to introduce an inner product in the space of solutions of the constraint

and define  physH)
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Summarizing, the choice of clock variable               leads to the standard 

form of the quantum free particle in the Heisenberg representation. 

In particular, the transition amplitude is:
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This choice of clock variable for the non-relativistic particle is unique, 

up to reparameterizations. Any other choice leads to evolving Dirac Observables 

that cannot  be promoted to self-adjoint operators.

For instance if one takes the position as a clock variable: T=x, it leads to 

an evolving observable: 

000 |)()()( xTX
p

m
TqTX xT

that is not self-adjoint due to the momentum in the denominator.



If the classical Dirac observable can be promoted to a self-adjoint  operator in          ,

one can show that there is an operator, U(T),  such that  the evolution in the 

c-number parameter T  is unitary. The requirement  that the evolving observables  be

self-adjoint  is very restrictive in any totally constrained system and  imposes strong 

limitations on the type of clocks that can be used at the quantum level.
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The issue of the parameter T

Evolving observables depend on a real parameter T.  That is we are assuming that 

there is an external magnitud T, that is not represent by any quantum operator 

nor it belongs to any physical Hilbert space.

One may wonder about the meaning of the condition               in the generic situation 

in which the clock variable         is not defined in 
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In the example of the free non relativistic particle this difficulty is not apparent because

we simple consider T as the time measured by an external clock, but if one wants 

to seriously consider that it corresponds to some dynamical variable of the system 

one runs into troubles.

In any generally covariant system as general relativity the clock will be associated 

to certain physical sub-system with dynamical variables that will not be well defined

in
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Evolving constants are measurable quantities but, in the quantum realm, 

they depend on an external parameter, whose observation is not described 

by the theory.

2) Conditional probabilities.

A second alternative that preceded the idea of evolving observables was 

a description of the evolution in terms of conditional probabilities.

Page and Wootters analyzed this issue many years ago. Kuchař noted that this 

procedure faces important difficulties, in particular it does not lead to the 

correct propagators. The problem is related again with the fact that the evolution 

variable cannot be defined in the physical space of states.

Marolf in a very interesting paper gr-qc/0902.1551 has recently presented 

an implementation of the evolving Dirac observables. We consider however 

that the issue of the external parameter is still present in this implementation.



Recently the idea received attention by Dolby who proposed a new approach to 

the issue of the definition of conditional probabilities.

Hellmann, Mondragon Perez and Rovelli  Phys.Rev.D75:084033,2007 analyzed 

the issue of the definition of probabilities for sequences of measurements 

proposed by Dolby and concluded that they present interpretational problems, 

and that it is not clear to what measurement setup does these probabilities correspond. 

They have also proposed a treatment for the description of a sequence of quantum 

measurements based only on single event probabilities.

3) Conditional probabilities in terms of evolving Dirac observables.

R.G. R. Porto J. Pullin and S. Torterollo: Phys.Rev.D79:041501R,2009.

As we have seen, both approaches require the use of variables which are not 

defined in the physical space. 

This is the case of the clock variable in Page-Wootters or the variables identified 

with  T in the evolving observable approach.

In this paper we will elaborate upon a different approach where all reference 

to external parameters is abolished, and evolving constants are used to define 

correlations between Dirac observables in the theory.



Thus, we shall assume that evolving constants are measurable quantities, 

provided they can be promoted to well defined self-adjoint operators in the 

physical Hilbert space, but we would fall short to introduce an intrinsic, and fully 

quantum relational description of evolution, unless we find a way to get rid of the 

dependence on external parameters.  

From a physical point of view, any observable in the theory should 

be described by a quantum operator in the space of physical states, and that 

should be no different for time, which it is ultimately measured by physical clocks 

obeying the laws of quantum mechanics.

First you choose an evolving observable as your clock, let us call it T(t) .

Then one identifies the set of observables                             that commute with T 

and describe the physical system whose evolution one wants to study and compute
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Notice that I have changed the notation and the external parameter is now called t.

In other words, t is the parameter associated to the variable used to define the 

evolving observables. This variable is treated as an ideal unobservable quantity.



A simple example.

One considers the constrained system:
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with                               we have two free particles and one can define:
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I am using          as unobservable 

parameter
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Notice that we are integrating in the  “ideal” time t.

The experimental setup we have in mind is to consider an ensamble of 

non-interacting systems with two quantum variables each to be measured. 

Each systems is equipped with a recording device that takes a single snapshot of 

O and T at a “random” unknown value of the “ideal” time t. One takes a large 

number of such systems, launches them all in the same quantum state,  

“waits for a long time” and conclude the experiment. One computes how 

many times                   each reading with a given value                        occurs. 

From here one can immediately compute a joint probability in the limit of 

infinite systems, 

We have assumed by simplicity magnitudes with discrete spectra.
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We can then write the conditional probabilities that yield the propagators,

This expression yields the propagator for the system to move from

Notice that in particular no assumption about the relative ordering 

of the unobservable variables t and t’ is needed.  

One can show that this expression yields the correct propagator. In 

the example of the previous slide:

Everything is given in terms of the Dirac Observables )(),( 21 tXtX
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Let us come back to the previous result

And            can be interpreted as the probability that the external

unobservable time  is   t’ when the variable taken as a clock

reads      
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This probability will be controlled by the position of the peak and the width of 

the wave packet of the particle 1. If were a Dirac delta we would recover

the exact ordinary non-relativistic propagator.

The use of real clocks may lead to a loss of quantum coherence and therefore to 

corrections to the standard propagator.
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4) Real clocks and loss of unitarity.



We have therefore ended with the standard probability expression with an

“effective'' density matrix in the Schrödinger picture given by   

Unitarity may be lost since one ends up with a density matrix that is a 

superposition of density matrices associated with different values of t

The origin of the lack of unitarity is the fact that definite statistical predictions are only 

possible by repeating an experiment. If one uses a real clock, which has 

quantum fluctuations, each experimental run will correspond to a different value 

of the evolution parameter. The statistical prediction will therefore correspond to an 

average over several intervals, and therefore its evolution cannot be unitary. 

The underlying unitary evolution of the evolving constants in the ideal time t is crucial, 

yet unobservable. All we observe are the correlations in physical time, then it is 

not surprising those present a fundamental level of decoherence due to the 

intrinsically quantum and gravitational limitations of real clocks.



The Schrödinger evolution is modified:
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Where σ(T) is the rate of spread of the wave function of the clock:

What are the consequences of the extra term? If we assume σ is 

constant, the equation can be solved exactly and one gets that the

density matrix in an energy eigen-basis evolves as

Where the omega’s are the Bohr frequencies associated with the 

eigenvalues of H.

RG, R. Porto, JP, NJP 6, 45 (2004)

If we assume the “real clock'' is behaving semi-classically. 
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Therefore,  the off-diagonal elements of the density matrix decay to zero exponentially, 

and pure states generically evolve into mixed states. Quantum mechanics with real 

clocks therefore does not have a unitary evolution. 

The effects are more pronounced the worse the clock is. Which raises the question: 

is there a fundamental limitation to how good a clock can be?

There are many phenomenological arguments based on quantum and gravitational 

considerations that lead to estimates of such a limitation, 

(Salecker-Wigner and Ng, Karolyhazy, Lloyd, Hogan, Amelino Camelia)

Limitations to how good a clock or a rod can be

I

We will not enter into the analysis of these phenomenological estimations, but it is 

important to remark that the evolution with real clocks will not be unitary if the 

spread in the error of the clock grows with time with some power of T.

That is, if                 the evolution is unitary, but if                                    there would exist

a fundamental loss of unitarity.   

In other words, the here proposed description of the evolution is perfectly unitary if 

clocks are only limited by the Planck time.
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Conclusions:

• Using evolving constants of the motion in the 
conditional probability interpretation of Page 
and Wootters allows to correctly compute the 
propagator and assign probabilities to 
histories.

• The resulting description is entirely in terms of 
Dirac observables.

• There are corrections to the propagator due to 
the use of “real clocks and rods” to measure 
space and time.



Happy Birthday Abhay!


