Isolated Horizons: Ideas, framework and applications

Jonathan Engle Centre de Physique Theorique, Marseille

(Abhay Fest, 2009)

 (Workers in IH/DH: Ashtekar, Baez, Beetle, Booth, Corichi, Dryer, JE, Fairhurst, Krasnov, Krishnan, Lewandowski, Pawlowski, Schnetter, Schoemaker, Sudarsky, Wisniewski, Van Den Broeck ...
Many more recent people: Ansorg, Chatterjee, Ghosh, Jaramillo, Liko, Lincusin, Xiaoning Wu, ...)

Goals

To summarize Isolated Horizons and their results

- Motivations and definitions
- Covariant Hamiltonian framework: mass, angular momentum, multipoles, laws of BH mechanics
- Mention Dynamical Horizons: Energy momentum flux and area balance law
- To summarize their applications
 - Classical (Numerical Relativity)
 - Quantum (Quantum Horizons and entropy)

Motivation

- Most commonly used horizons: Event H. and Killing H.
- Many applications
 - Event H. only `hard' way to define BH's generally

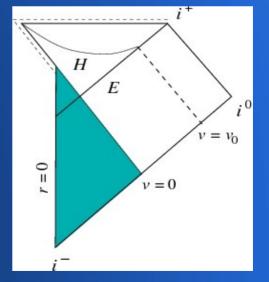
Laws of BH mechanics (e.g.:)

However: Event H. "too global"

- •Furthermore: In 1st law, M & J defined
- at ∞ , a at horizon, and k & Ω mixed.

 Killing Horizons assume symmetry beyond just at horizon – not available in realistic cases

$$\delta M = \frac{\kappa}{8 \pi G} \delta a + \Omega \delta J$$



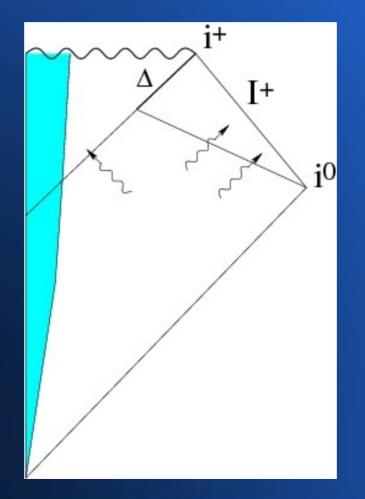
- Isolated Horizons: Horizon is stationary but time dependence outside.
- Dynamical Horizons: Horizon itself is time dependent.

(can be related to Hayward's trapping horizons)

Definition: Isolated Horizon

More precisely, an IH Δ is a null, S²xR hypersurface s.t. i. $-T_{ab} l^{b}$ is future causal; where l^{a} is null normal ii. $\Theta_{a} = 0$ (Expansion-free) Ensures ∇_{a} induces D on Δ iii. D commutes with \mathcal{L} acting on vt fields on Δ Let $q_{ab} :=$ pull back of g_{ab} . Def'n implies $\mathcal{L}_{\mathcal{L}} q_{ab} = 0$. Generically l^{a} unique upto constant rescalings: reminiscent of Killing horizons Killing horizons are IH, but infinitely many more ex.s of IH (local ex. Thm of Lewandowski)

Settling to IH at late times

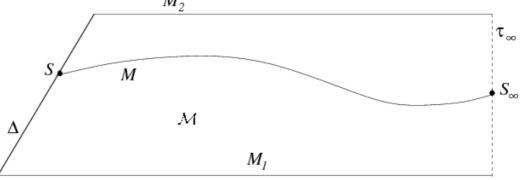


Laws of BH Mechanics

• 0th law:

 $\ell^{a} D_{a} \ell^{b} = \kappa_{(\delta)} \ell^{b} \quad (\ell = c \ell \Rightarrow \kappa_{(\ell)} = c \kappa_{(\delta)})$ surface gravity $\kappa_{(\delta)}$ is const. on Δ .

1st law: use Hamiltonian methods – covariant phase
space



Angular Momentum

- Fix ϕ^a on space-time s.t. It is asymptotic rotation at infinity, and s.t. $\mathcal{L}_{\phi}q_{ab} = 0$, $\mathcal{L}_{\ell}\phi^a = 0$ at the horizon.
- Generator of this rotation is

$$J^{\varphi} = J^{\varphi}_{ADM} - J^{\varphi}_{\Delta'} \text{ where } \qquad J_{\Delta} = \frac{-1}{8\pi G} \oint \omega_a \varphi^a d^2 V = \frac{-1}{4\pi G} \oint f \Im[\Psi_2] d^2 V$$
$$D_a l^b = \omega_a l^b \qquad \varphi^a \epsilon_{ab} = \partial_b f$$

- J^{ϕ} is ang. mtm. of radiation in the bulk (is zero if ϕ is global KVF)
- J^{ϕ}_{Δ} is ang. mtm. of horizon; is defined locally no ref. to infinity.

Fix ϕ at the horizon and restrict to space-times compatible with it there

Energy

- Fix t^a on space-time s.t. It is asymptotic TT at infinity, and s.t. t^a = c_(t) tⁱ - Ω_(t)φ^a at Δ, for some c_(t) and Ω_(t) const on Δ.
 Ω_(t): angular velocity, c_(t): determines surf. grav. k_m = c_mk_m
- Evolution along t^a is Hamiltonian, i.e., is generated by some $E^{(0)} = E^{(0)}_{ADM} E^{(0)}_{A}$, iff

a) $\kappa_{(t)}$ and $\Omega_{(t)}$ are functions only of a_{Δ} and J^{φ}_{Δ} b) $\frac{\partial \kappa_{(t)}}{\partial J_{\Delta}^{(\varphi)}} = 8 \pi G \frac{\partial \Omega_{(t)}}{\partial a_{\Delta}}$ But these are suff. to imply First Law – for $E^{(t)}_{\Delta}!$ $\delta E^{(t)}_{\Delta} = \frac{\kappa_{(t)}}{8 \pi G} \delta a_{\Delta} + \Omega_{(t)} \delta J^{(\varphi)}_{\Delta}$

Furthermore $E^{(t)}_{\Delta}$ is a local fn at Δ – has interp of horizon energy corr. to $t^{a}|_{\Delta}$

Canonical choice of energy

- A priori, can construct infinite number of possible t^a and $E^{(t)}_{\Delta}$: each choice of $\kappa_{(t)}(a_{\Delta}, J^{(\phi)}_{\Delta})$ determines $\Omega(a_{\Delta}, J^{(\phi)}_{\Delta})$ determines t^a and $E^{(t)}_{\Delta}$. All of them satisfy first law.
- Is there canonical choice of t^a and hence E^(t)_Δ? YES! Stipulate that t^a reduce to stationary KVF on stationary space-times.

Implies $\kappa_o = \kappa_{kerr} (a_\Delta, J_\Delta) = \frac{R_\Delta^4 - 4G^2 J_\Delta^2}{2R_\Delta^3 (R_\Delta^4 + 4G^2 J_\Delta^2)}$

Leading to

 $(a_{\Delta} = 4\pi R_{\Delta}^2)$

Satisfies "canonical" first law

Local expression, surprisingly simple, but derived – not postulated.

 $E_{\Delta}^{(t)} = \frac{\sqrt{R_{\Delta}^4 + 4G^2 J_{\Delta}^2}}{2GR} \equiv M_{\Delta}$

Symmetry Groups

`horizon geometry' (q_{ab}, D_a)

- Pull-back of metric to Δ

- Derivative operator induced on Δ
- Type I: (q_{ab}, D_a) is spherically symmetric
- Type II: (q_{ab}, D_a) is axially symmetric
- Type III: (q_{ab}, D_a) has only *l*-symmetry

Chern-Simons symplectic structure

Was not said, but in the can. framework, in order for the symplectic structure Ω' to be conserved, it is nec. to include a boundary term in the sympl. str.

In Type I case, the boundary sympl. str. takes Chern-Simons form in terms of Ashtekar-Barbero connection $A_a^i = \Gamma_a^i + \gamma K_a^i$:

$$\Omega_{S}(\delta_{1},\delta_{2}) = \frac{-a_{\Delta}}{8\pi^{2}G\gamma} \int_{S} Tr \,\delta_{1}A \wedge \delta_{2}A$$

(Also happens in Type II case, but more subtle ...) Is important for quantization of IH (next talk).

Further developments

- Laws of BH mech. extend to Einstein-Maxwell and Einstein-YM cases
- Mass and angular momentum multipoles M_n , J_n in type II case
- Natural foliation of Δ, cov.-defined coordinates and tetrad in a neighbd of Δ
- Dynamical Horizons
 - Local expr. for energy-mtm flux across horizon
 - Area balance law and integral version of 1st law
 - 2nd law: Area always increases
- Higher dim. IH, and more recently: supersymm IH (Booth, Liko)...

Applications

- Numerical Relativity
 - Each continuous piece of apparent horizon world tube is a Dynamical Horizon
 - Many IH constructions can still be used (horizon angular mtm, horizon mass, multipoles)
- Quantum Isolated Horizons and Black hole entropy
 - See next talk
 - (new paper out on the non-gauge-fixed SU(2) calculation: JE, Noui, Perez, arxiv:0905.3168)

Summary

- IH and DH give quasilocal description of black holes allowing radiation arbitrarily close to horizon. IH: horizon is in equilibrium. (can be related to Hayward's trapping horizons)
- Can construct Hamiltonian framework for IH, define Ang. Mtm., Mass, Multipoles. 1st law is satisfied with all quantities quasilocally defined.
- Is used in interpreting numerical simulations: simple and well-motivated expressions
- Is used in BH entropy calculations in LQG

