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BLACK HOLES AND QUANTUM GRAVITY ?

Black Holes are, as Chandrasekhar used to say:
“... the most perfect objects there are in The Universe: the
only elements in their construction are our concepts of space
and time. Since GR predicts a single family of solutions, they
are the simplest as well.” They are the crown of classical
physics in terms of their simplicity and beauty.

But, Bekenstein and Hawking told us that :

i) Black Holes satisfy some ‘thermodynamic-like laws’.

δM =
κ

8πG
δA ⇒ M ↔ E, κ ↔ T , A ↔ S
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ii) When one invokes quantum mechanics (~) then
something weird happens:

E = M

T =
κ ~
2π

,

and

S =
A

4 G~

Black holes seem to have thermodynamic properties!
What are then the underlying degrees of freedom re-
sponsible for entropy?
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The standard wisdom is that only with a full mar-
riage of the Quantum and Gravity will we be able to
understand this.

Different approaches:

• String Theory

• Causal Sets

• Entanglement Entropy

• Loop Quantum Gravity (This talk)
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QUESTIONS TO BE ADDRESSED

• How do we characterize black holes in equilibrium?
(Engle’s talk)

• Can we define quantum horizon states?

• Which states should we count?

• How does the entropy behave?

• Large BH: Bekenstein-Hawking entropy

5



The Beginning

Physically, one is interested in describing black holes in equilib-
rium. That is, equilibrium of the horizon, not the exterior. Can
one capture that notion via boundary conditions?

Yes! Answer: Isolated Horizons

Isolated horizon boundary conditions are imposed on an inner
boundary of the region under consideration.

The interior of the horizon is cut out. In this a physical bound-
ary?
No! but one can ask whether one can make sense of it:

What is then the physical interpretation of the boundary?
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• The null boundary ∆, the 3-D isolated horizon, provides an
effective description of the degrees of freedom of the inside re-
gion, that is cut out in the formalism.

7



• The boundary conditions are such that they capture the in-
tuitive description of a horizon in equilibrium and allow for a
consistent variational principle.

• One can use loop quantum geometry in the bulk and include
the boundary.

• The quantum geometry of the horizon has independent de-
grees of freedom that fluctuate ‘in tandem’ with the bulk quan-
tum geometry.

• The quantum boundary degrees of freedom are then respon-
sible for the entropy.

• The entropy thus found can be interpreted as the entropy
assigned by an ‘outside observer’ to the (2-dim) horizon S = Σ∩∆.
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• INTERPRETATIONAL ISSUES:

Is this to be regarded as the entropy contained by the horizon?

Is there some ‘holographic principle’ in action?

Can the result be associated to entanglement entropy between
the interior and the exterior?, etc.

How restrictive is the condition that the black hole horizon is
assumed to be there from the beginning?
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ISOLATED HORIZONS (Quick Reminder)

An isolated horizon is a null, non-expanding horizon ∆ with
some notion of translational symmetry along its generators. There
are two main consequences of the boundary conditions:

• The gravitational degrees of freedom induced on the horizon
are captured in a U(1) connection,

Wa = − 1
2 Γi

a ri

• The total symplectic structure of the theory (and this is true
even when matter is present) gets split as, Ωtot = Ωbulk + Ωhor with

Ωhor =
a0

8π2 Gγ

∮
S

dW ∧ dW ′

• The ‘connection part’ and the ‘triad part’ at the horizon S must
satisfy the condition, Fab = − 2π γ

a0
Ei

ab ri, the ‘horizon constraint’.
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CONSTRAINTS

The formalism tells us what is gauge and what not. In particular,
with regard to the gravitational constraints we know that:

• The relation between curvature and triad, the horizon con-
straint, is equivalent to Gauss’ law.

• Diffeomorphisms that leave S invariant are gauge (vector field
are tangent to S).

• The scalar constraint must have a vanishing shift N |hor = 0
on the horizon. Thus, the scalar constraint leaves the horizon
untouched; any gauge and diff-invariant observable is a Dirac
observable. For instance, all multipole moments.

In the quantum theory of the horizon we have to implement
these facts.
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QUANTUM THEORY: THE BULK (See Thiemann’s talk)

A canonical description in terms of SU(2) Yang-Mills:

Ai
a SU(2) connection ; Ea

i triad

with Ai
a = Γi

a − γ K i
a. Loop Quantum gravity on a manifold with-

out boundary is based on two fundamental observables of the
fundamental variables :

Holonomies, he(A) := P exp(
∫

e A)

and

Electric Fluxes, E(f, S) :=
∫

S dSabEi
ab f i

The main assumption of Loop Quantum Gravity is that these
quantities become well defined operators. (LOST Theorem: There
is a unique representation on a Hilbert space of these observables
that is diffeomorphism invariant).
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Hilbert space:

HAL = ⊕graphsHΥ = Span of all Spin Networks |Υ,~j, ~m〉 (1)

A Spin Network |Υ,~j, ~m〉 is a state labeled by a graph Υ, and
some colorings (~j, ~m) associated to edges and vertices.
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The spin networks have a very convenient interpretation. They
are the eigenstates of the quantized geometry, such as the area
operator,

Â[S] · |Υ,~j, ~m〉 = 8π`2
Plγ

∑
edges

√
ji(ji + 2) |Υ,~j, ~m〉 (2)

One sees that the edges of the graph, excite the quantum geom-
etry of the surface S at the intersection points between S and
Υ.
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HORIZON QUANTUM THEORY

Total Hilbert Space is of the form:

H = HV ⊗HS

where HS, the surface Hilbert Space, can be built from Chern
Simons Hilbert spaces for a sphere with punctures.

The conditions on H that we need to impose are: Invariance
under diffeomorphisms of S and the quantum condition on Ψ:(

Id⊗ F̂ab +
2π γ

a0
Êi

ab ri ⊗ Id

)
· Ψ = 0

Then, the theory we are considering is a quantum gravity the-
ory, with an isolated horizon of fixed area a0 (and other multiple-
moments). Physical state would be such that, in the bulk satisfy
the ordinary constraints and, at the horizon, the quantum hori-
zon condition.
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ENTROPY

We are given a black hole of area a0. What entropy can we assign
to it? Let us take the microcanonical viewpoint. We shall count
the number of horizon states N such that they are compatible
with the macroscopic constraints and satisfy:

• The area eigenvalue 〈Â〉 ∈ [a0 − δ, a0 + δ]

• The quantum horizon condition.

The entropy S will be then given by

S = lnN .

The challenge now is to identify those states that satisfy the two
conditions, and count them.
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CHARACTERIZATION OF THE STATES

There is a convenient way of characterizing the states by means
of the spin network basis. If an edge of a spin network with label
ji ends at the horizon S, it creates a puncture, with label ji. The
area of the horizon will be the area that the operator on the bulk
assigns to it: A = 8πγ`2

Pl

∑
i

√
ji(ji + 1).

Is there any other quantum number associated to the punctures
pi? Yes! the eigenstates of Êab that are also half integers mi, such
that −|ji| ≤ mi ≤ |ji|. The quantum horizon condition relates
these eigenstates to those of the horizon Chern-Simons theory.
The requirement that the horizon is a sphere (topological) then
imposes a ‘total projection condition’ on m′s:∑

i

mi = 0
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A ‘configuration’ of the quantum horizon is then characterized
by a set of punctures pi and to each one a pair of half integer
(ji, mi).

The counting has three steps:

i) Given the classical area a0, find the possible sets {nk} of con-
figurations of m’s compatible with it.

ii) Given such a configuration, {nk}, find the degeneracy R({nk})
associated the possible orderings.

If we are given N punctures and two assignments of labels (ji, mi)
and (j′i, m

′
i). Are they physically distinguishable? or are there

some ‘permutations’ of the labels that give indistinguishable
states?

That is, what is the statistics of the punctures?
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As usual, we should let the theory tell us. One does not postu-
late any statistics. If one treats in a careful way the action of
the diffeomorphisms on the punctures one learns that when one
has a pair of punctures with the same labels j and m, then the
punctures are indistinguishable and one should not count them
twice. In all other cases the states are distinguishable.
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THE COUNTING

We start with an isolated horizon, with an area a0 and ask how
many states are there compatible with the two conditions. Two
relevant quantum numbers (jI, mI) for the Hilbert space.
Exact counting using number theory. Thus, given (n1/2, n1, n3/2, . . . , nk/2),
where ns/2 is the number of punctures with label s we count the
number of states:

N =
∑
{ns}

(
N !

Πs (ns!)

)
1

2π

∫ 2π

0

dθ
∏

s

cos(sθ)ns (3)

Taking the large area approximation A � `Pl, and using the Stirling
approximation. One gets:

S =
A

4`2
Pl

γ0

γ
(4)

with γ0 the solution to
∑

j 2 e2π γ0

√
ji(ji+1) = 1.
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The first correction to the entropy area relation is

S =
A

4`2
Pl

γ0

γ
− 1

2
ln(A) + . . .

• If we want to make contact with the Bekenstein-Hawking we
have to chose γ = γ0.

• The coefficient of the logarithmic term is universal.

• The formalism can be generalized to more general situations,
and the result is the same:

– Maxwell, Dilatonic and Yang Mills Couplings (Ashtekar,
Baez, AC, Krasnov, Krishnan, Fairhurst)

– Cosmological, Distortion and Rotation (Ashtekar, Engle,
Van der Broeck)

– Non-minimal Couplings (Ashtekar, AC)
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CONCLUSIONS AND TAKE HOME MESSAGE

• Isolated Horizons provide a consistent framework to incorpo-
rate black holes locally in equilibrium.

• One can consistently quantize the theory.

• Entropy is finite and dominant term linear in Area.

• Any black hole of astrophysical interest is included

• Analysis of Planck scale BH’s shows ‘quantization of entropy’.

• Contact with Bekenstein’s heuristic model, and Mukhanov-
Bekenstein in a subtle manner
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OUTLOOK

• We have not dealt with the singularity

• Ashtekar-Bojowald ‘paradigm’ for an extended quantum space-
time

• Based on expectations about singularity resolution coming
from LQC

• Hawking radiation?

• Lost Information Puzzle

• Full theory: How to specify quantum black holes from the full
theory?
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HAPPY 60th BIRTHDAY ABHAY!
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CHARACTERIZATION OF THE STATES

There is a convenient way of characterizing the states by means
of the spin network basis. If an edge of a spin network with label
ji ends at the horizon S, it creates a puncture, with label ji. The
area of the horizon will be the area that the operator on the bulk
assigns to it: A = 8πγ`2

Pl

∑
i

√
ji(ji + 1).

Is there any other quantum number associated to the punctures
pi? Yes! the eigenstates of Êab that are also half integers mi, such
that −|ji| ≤ mi ≤ |ji|. The quantum horizon condition relates
these eigenstates to those of the Chern-Simons theory. The re-
quirement that the horizon is a sphere (topological) then imposes
a ‘total projection condition’ on m′s:∑

i

mi = 0
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A state of the quantum horizon is then characterized by a set of
punctures pi and to each one a pair of half integer (ji, mi).

If we are given N punctures and two assignments of labels (ji, mi)
and (j′i, m

′
i). Are they physically distinguishable? or a there some

‘permutations’ of the labels that give indistinguishable states?

That is, what is the statistics of the punctures?

As usual, we should let the theory tell us. One does not postu-
late any statistics. If one treats in a careful way the action of
the diffeomorphisms on the punctures one learns that when one
has a pair of punctures with the same labels j and m, then the
punctures are indistinguishable and one should not count them
twice. In all other cases the states are distinguishable.
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