The Pennsylvania State University
The Graduate School
Department of Physics

SPIN FOAM MODELS

A Thesis in
Physics
by
Kirill Krasnov

© 1999 Kirill Krasnov
Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 1999



We approve the thesis of Kirill Krasnov.

Date of Signature

Abhay V. Ashtekar

Eberly Professor of Physics
Thesis Adviser

Chair of Committee

Lee Smolin
Professor of Physics

Lee Samuel Finn
Associate Professor of Physics

Ranee Brylinski
Professor of Mathematics

Jayanth Banavar
Professor of Physics
Head of the Department of Physics



iii

Abstract

The term ‘spin foam models’ was introduced by Baez to refer to a new approach
to the quantization of general relativity, which appeared as an offsping of loop quan-
tum gravity. Although this new approach was motivated, logically and historically, by
loop quantum gravity, by now it has become clear that the two approaches are rather
independent. While loop quantum gravity attempts to give a canonical quantization of
general relativity, the spin foam model approach aims at giving a precise meaning to
the gravity path integral. Eventually, the two approaches will probably be shown to be
essentially equivalent, but no rigorous result to this effect exists as of now. In this thesis
I develop the spin foam quantization of gravity ab initio, referring to results from loop
quantum gravity only for comparison. I start from a review of 2+1 gravity and discuss
different routes to quantize it. While some of these, for example, using Chern-Simons
theory, only exist in 241, others can be generalized to higher dimensions. Spin foam
models give such a generalization. Developing it, we will encounter, in particular, a deep
relation between group representation theory and geometry. I also discuss in some detail
related topics, such as topological field theory, notably BF theory, higher-dimensional
Euclidean geometry and quantum groups.
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Preface

The subject of quantum gravity has a long history. In fact, it is almost as old as
general relativity itself. As early as 1916, Einstein discussed! a possibility that it may
be assential to treat the gravitational field quantum mechanically [28]. Since then we
have experienced an enormous progress in our understanding of both quantum theory
and general relativity. However, the problem of quantum gravity is still open. There are
many approaches to the subject, each enjoying a varying degree of success. The most
popular nowadays is probably string theory. In this thesis I develop another approach
to the problem. The approach pursued here takes very seriously the lesson given to us
by Einstein: gravity is geometry. Thus, the problem of quantum gravity is treated here
as the problem of quantum description of geometry.

More specifically, I develop an approach, for which the name “spin foam mod-
els” was proposed by Baez [9]. This approach is intimately related to loop quantum
gravity [58], and was, in fact, inspired by it. Loop quantum gravity attempts to give
the canonical quantization of general relativity; spin foam models can be thought of as
the corresponding path integral description [51]. Although it is natural to expect this
relation on general grounds, a precise argument to this effect does not exist as of now.
In this thesis I take an alternative, independent route to spin foam models, and will refer
to results of loop quantum gravity only for comparison. Namely, to arrive to spin foam
models I will start from the classical action of general relativity and try to give meaning
to the corresponding path integral. As a guide, I will use the intuition from topological
field theories and 2+1 gravity.

At the outset, I wish to point out that some of the results I am using here are
not mine. I will make clear which results are mine and which are not through references.
Most of my results presented here were obtained in collaboration with Laurent Freidel. T
am happy to use this as another occasion to thank him for his patience. I would also like
to say that in several places I am using other author results giving them an interpretation
different from that in the original work. This may not agree with the author’s viewpoint,
and I am the only one to be blamed for any misconceptions.

The organization of this thesis is as follows. In the next chapter I discuss in some
details the quantization of 241 gravity. The subject of 2+1 gravity is vast, see e.g.
the recent book [20]. I am presenting here only what is relevant to the viewpoint I am
developing. The main point which I want to make in this chapter is that there exists a
non-perturbative definition of the path integral for the theory given by Ponzano-Regge or
Turaev-Viro models. This non-perturbative definition allows a generalization to higher
dimensions, which will be given by spin foam models. Chapter 2 develops a relation
between classical (and quantum) Euclidean geometry and group representation theory. I

7

e wrote: “Nevertheless, due to the inner atomic movement of electrons, atoms would have
to radiate not only electromagnetic, but also gravitational energy, if only in tiny amounts. As
this is hardly true in nature, it appears that quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new theory of gravitation.”
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start here with the Ponzano-Regge formula for the asymptotics of (6j)-symbol, and then
discuss quantization of a geometric simplex in 241 dimensions. This gives a geometric
interpretation to various constructions that will be developed later. Motivated by all
these results, I introduce in chapter 3 the idea of a spin foam model. In the approach
I am presenting here, spin foam models arise as certain deformations of the topological
field theory known as BF theory. Thus, in chapter 4 I describe BF theory, both classically
and quantum mechanically. Chapter 5 is one of the central ones; here I calculate the
generating functional for BF theory, from which all spin foam models will be derived
later. Chapter 6 gives a classical description of a large class of physically interesting
theories as deformations of the BF theory, where deformation means a modification of
the BF theory action by addition to it of an interaction term. In chapter 7 I remind
the reader the known state sum models for the theories described. Chapter 8 obtains
these, as well as few other models using the technique of generating functional. Finally,
using all the results obtained, Chapter 9 generalizes the relation between geometry and
representation theory, which was discussed in Chapter 2, to higher dimensions. Chapter
10 is devoted to a discussion of results achieved.



Chapter 1
Introduction: 241 gravity

The logic of the thesis will be to first discuss the quantum description of geometry
on the well-understood example of 2+1 gravity, and then generalize this description
to higher dimensions. We start in section 1.1 with a review of different methods to
quantize 2+1 gravity. The emphasis will be placed on path integral type quantization,
which is described in section 1.2. Here I introduce Ponzano-Regge and Turaev-Viro
models. In section 1.3 I discuss how these models can be derived starting from the
classical action functional, and compare perturbative and non-perturbative derivations.
The non-perturbative derivation presented here will be the starting point for introduction
of spin foam models in chapter 3. Here we will also encounter a relation between classical
(quantum) geometry and group representation theory. This relation will be the main
theme of the next chapter.

1.1 Quantizations

There are many ways to quantize 2+1 gravity, see, e.g., the recent book [20] on
the subject. Here we will discuss the different quantization methods only schematically,
in the extent we need for later constructions. Most of the results presented here are
about ten years old, developed in a spur of activity that followed Witten’s pioneering
work [63] on the subject.

Classical theory

Let us start with a brief review of the classical theory. There are two different,
although equivalent, classical descriptions available. First, in the spirit of Einstein, one
can describe 2+1 gravity as a theory of metrics. The action, which is a functional of the
Lorentzian signature metric g,p, is the standard Einstein-Hilbert action:

1 3
§/Md 2v/—=g (R —20), (1.1)

where g is the determinant of the metric, R is the trace of the Ricci tensor and A is the
cosmological constant. We use the units in which 87G = 1 throughout. We shall also
assume everywhere that the spacetime manifold M is smooth and is either compact or
has the topology ¥ x IR, where ¥ is compact. Which of the two choices is used will
depend on the context.

The above, geometrodynamics description of 241 gravity is, however, not the
one best suited for quantization. Let us now consider another, classically equivalent
description of 2+1 gravity. This description treats it as a theory of connections rather
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than metrics. Namely, the action for gravity in the so-called first order formalism is a

functional of the frame field, or triad e"z , and the spin connection wi ‘Z:
A
Sle, w] :/M (eI/\FJK— Eel/\e‘]/\eK> €E1TK- (1.2)

Here F' is the curvature of the spin connection w, u, v are the spacetime indices, and
I,J, K are the internal ones. Varying this action with respect to w one obtains the
equation saying that the frame is covariantly constant with respect to the connection w.
This equation can be solved for w, which determines w as the spin connection compat-
ible with the frame. Substituting the solution into the action, one obtains the original
Einstein-Hilbert action. This means that the first order formulation is equivalent to the
geometrodynamics one, at least classically, in the sense that all solutions of Einstein’s
gravity are also solutions of this theory. Note, however, that the reverse is not true:
there are solutions of the first order gravity that are not solutions of general relativity.
For example, the ‘zero metric’ solution e,w = 0 solves all equations of motion in the
absence of the cosmological constant, but is quite pathological from the point of view
of geometrodynamics. More generally, the first order gravity provides an extension of
general relativity to degenerate metrics. As we shall see, degenerate metrics play an
especially important role in the quantum theory. It is the fact that the first order action
is defined for degenerate metrics that makes it more suitable for the quantization.

The theory becomes especially simple in the case of zero cosmological constant.
Indeed, in this case, varying with respect to e one gets:

F(w) =0, (1.3)

which means that the space of classical solutions is the space of flat connections, together
with the frames compatible with them. This means that the reduced phase space of the
theory, which can be thought of as the space of solutions modulo gauge transformations,
will usually be finite dimensional! This comes from the fact that the moduli space of flat
structures on M = ¥ X IR can be parametrized by homomorphisms of 71 (X) into ISO(3)
or ISO(2,1) depending on the spacetime signature, see [63] for the explanation. It is
then easy to show that the dimension of the moduli space is 2g — 2, where ¢ is the genus
of 3, times the dimension of G, which is 6 in our case. This means that the dimension
of the phase space will be 12g — 12. Thus, 241 gravity is a system with finite number
of degrees of freedom! One can show that this also holds for a non-zero cosmological
constant, in which case one simply has to replace the group of linear transformations by
an appropriate conformal group, see [63]. The fact that the phase space of 241 gravity
is finite dimensional is crucial for the quantization.

As always, there are two main routes to the quantization: canonical and path
integrals. Let me first discuss the canonical quantization.

Canonical quantization

As we have seen, when the spatial manifold ¥ is compact, 241 gravity has only
a finite number of degrees of freedom. This makes it possible to treat it as a usual



quantum mechanical system. One can apply to it, for example, the method of geomet-
rical quantization. This is what was done in the original paper of Witten [63], and then
developed extensively in the works that followed. The advantage of the canonical quan-
tization method is that it is best suited in order to prove that quantum theory exists
and is well-defined. However, if one wants to analyze the nature of quantum geometry,
the canonical quantization framework a la Witten is hardly the best one. Indeed, this
quantization deals only with global quantities, and the picture of quantum geometry is
obscure. Moreover, the canonical quantization program is so successful in 241 because
of the ‘finitness’ of the physical phase space. In higher dimensions one knows this not
to be the case. Thus, because in higher dimensions one does not expect to be able to
understand the reduced phase as well as in 241, the method that is successful in 2+1
cannot be generalized to higher dimensions. Because of this, we shall not develop the
canonical quantization further, and turn to the path integral method. As we shall see,
this method gives a more transparent picture of quantum geometry, and also serves as
a starting point for the higher dimensional generalizations. Let us note, however, that
one can canonically quantize 2+1 gravity without first reducing the phase space to that
of a system with a number of degrees of freedom. Such canonical quantization can be
generalized to higher dimensions. This is the subject of loop quantum gravity [58]. We
shall not follow this route here and instead turn to path integrals.

Path integral quantization

Path integral quantization attempts to make sense of the following object:
/DwDe STwe], (1.4)

Here we have taken the action to be that in the first order formalism, for it is not known
how to make sense of the path integral over the space of metrics.

In the above path integral, one can take the relevant gauge group to be either
SO(2,1) or SO(3), depending on the signature. An important delicate point is the
presence of the imaginary unit in the exponential. For the case of Lorentzian signature
this is as expected. However, in the case of metrics of Euclidean signature, the above
path integral defines not what is usually called Euclidean gravity. Indeed, in the later
case one considers the path integral of the exponentiated Fuclidean action with no ¢
in the exponential. This corresponds to statistical mechanics, rather than quantum
mechanics, and is of importance, for example, for black hole thermodynamics. The
path integral of the exponentiated Euclidean action with % in the exponential defines a
quantum theory of metrics of Euclidean signature. The physical relevance of this theory is
disputable. However, at the very least, this theory may be thought of as a playground for
a more realistic quantum theory, for example, the one describing metrics of Lorentzian
signature. The quantum theory of Euclidean metrics is much simpler due to the fact
that the corresponding gauge group is compact. However, even in this case many of the
difficult questions of quantum gravity can be addressed without one having to worry
about subtleties related to non-compactness. Thus, this ‘Euclidean quantum theory’ is
certainly worth studying. Most of our analysis will be devoted to this theory. There
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are, however, interesting results available for the Lorentzian case, see [15, 33]. We will
comment on the case of Lorentzian signature in the last chapter.

The path integral (1.4) is not defined. The standard route to define the path
integral is through perturbation theory. This route is not always available, as for example
for the case of gravity in geometrodynamics variables, but, luckily, is available when the
theory is rewritten in the first order formalism. Indeed, the first order formalism Hilbert-
Palatini action is polynomial in the basic variables. There is the quadratic term e A dw,
which, according to the rules of perturbation theory, must be treated as the kinetic term,
and two cubic terms: eAw Aw and eAeAe. Thus, up to the important subtleties related
to the gauge fixing, the perturbation theory is straightforward. It turns out that not
only this perturbation theory makes sense, it is finite! It is especially easy to see that
in the case of zero cosmological constant. Then, we have only one interaction term:
e Aw A w. A simple argument due to Witten [64] shows that the theory must be one
loop exact. Thus, in the case of a compact spacetime manifold M, the path integral is
given by the sum over the moduli space of classical solutions weighted with their one
loop contributions. This weight is given by the ratio of certain determinants and is just
the Ray-Singer analytic torsion for the corresponding flat connection. In particular, it is
a topological invariant of the manifold M. In the case when the cosmological constant
is not zero, the situation is more complicated, for the theory is no longer one loop exact.
Still, it turns out that the perturbation theory expansion is finite order by order. All
these results are intimately related to Chern-Simons theory, knot theory and quantum
groups, but we shall not develop this further now.

Thus, the path integral for gravity can be defined by the corresponding pertur-
bation theory. A very important lesson one learns defining the theory this way is as
follows. As we discussed above, when one attempts to construct the quantum theory
considering perturbations around flat spacetime, the perturbation theory turns out to be
non-renormalizable. However, as we just discussed, the perturbation theory around ‘zero
metric’ is well-defined and actually finite. Thus, the flat metric is simply a wrong vacuum
to expand around and this is an ‘explanation’ of the fact that 2+1 gravity seems to be
non-renormalizable when described in geometrodynamics variables. This may be taken
as a clue why perturbation theory does not make sense in higher dimensions: again, one
may be simply expanding around a wrong vacuum! This is an important lesson that
should be learned from the example of 241 gravity.

Encouraged by these beautiful results one may want to generalize them to higher
dimensions. However, here one runs into a dead block. The first step of such a general-
ization is straightforward: rewrite the theory in the first order formalism. The action is
again a functional of the frame and the spin connection:

/M’I‘I(T(e/\e)/\F), (1.5)

where 1 denotes the Hodge dual, and Tr is taken in the Lie algebra. One immediately
sees the problem: this theory does not define any perturbation theory around e = 0, for
there is no kinetic term. One can try to circumvent the problem and rewrite the theory
in the form (see Section 6.5):



/Mﬂ (E/\F—I— %@(E) /\E). (1.6)

Here E is an independent field, which is a (D — 2)-form taking values in the Lie algebra,
and ®(E) is a certain 2-form constructed from E and Lagrange multipliers ®, and linear
in both. Varying with respect to Lagrange multipliers one gets equations that guarantee
that E field comes from the frame. This action solves the problem with the kinetic
term: one can now have a perturbative expansion around £ = 0, but introduces another
problem: there is no kinetic term for the Lagrange multiplier fields.

Thus, there seems to be no perturbative way to define the path integral for gravity
in spacetime dimensions D > 3. The perturbative definition works only in 2+1, but not
in higher dimensions. This negative conclusion lead the idea of quantization of pure
gravity to be abandoned by a majority of theoretical physisists, and the bulk of research
activity on quantum gravity has shifted to approaches related to string theory, which
require extra dimensions and a whole infinite tower of massive states to make sense of
the theory.

However, as we shall see in the next section, there exists another, non-perturbative
way to define the path integral for 2+1 gravity. It is given by the so-called Ponzano-
Regge [48] and Turaev-Viro models [60]. This non-perturbative definition of the path
integral can be generalized to higher dimensions and leads to spin foam models.

1.2 Ponzano-Regge and Turaev-Viro models

Ponzano-Regge and Turaev-Viro models are simplicial state sum models in the
sense that they start by chopping the spacetime into simplices (tetrahedra) and associate
each triangulation of the spacetime manifold an amplitude. These models give a defini-
tion of the path integral of the exponentiated action, with ¢ in the exponential, for the
case of Kuclidean signature. Thus, they are theories of ‘Euclidean quantum theory’, in
the meaning discussed above. The relevant gauge group in this case is SO(3) (or SU(2)).

More precisely, let us fix a triangulation A of M. Let us label the edges of A by
irreducible representations of SU(2), that is, by spins j. Thus, to each edge e we assign
a label j,. One can then construct the following sum over labellings

PR(A) = > [ dim;_ JT(65);- (1.7)
je € t

Here dim(j) = 25 + 1 is the dimension of the representation j, the second product is

taken over tetrahedra ¢ of A, and (67) is the (normalized) classical (6j)-symbol (see the

Appendix D for a definition) constructed from the six spins labelling the edges of t.

Summing over spins one gets the triangulation amplitude PR(A).

There is an important subtlety, however. Note that, because each spin runs over
an infinite range of values, the sum over spins in (1.7) typically diverges. To make sense of
it one must introduce a regularization. A possible regularization is given by the Turaev-
Viro model, which we discuss below. After the introduction of this ‘regularization’,

the Ponzano-Regge amplitude PR(A) can be shown to be triangulation independent.
Thus, (1.7) gives an invariant of M: PR(A) = PR(M), which can be thought of as the



8

quantum amplitude of M. As we show below, this amplitude gives the value of the path
integral for M in the case of zero cosmological constant.

Turaev-Viro model is very similar, but it is constructed using the quantum group
SU(2) instead of the usual SU(2). Thus, let us again fix a triangulation A of M. Let us
label the edges e by irreducible representations of the quantum group (SU(2)),, where ¢
is a root of unity

2m gy
g=ek =e". (1.8)

The parameter & in the above formula turns out to be the parameter of the deformation
quantization. In this sense it plays the role of the Planck constant for this theory, and
this explains why we used the usual notation for Planck constant to refer to it. This is
the standard convention in the mathematics literature. The irreducible representations
of (SU(2))q are labelled by half-integers (spins) j satisfying j < (k — 2)/2. Thus, we
associate a spin j, to each edge e. The vacuum-vacuum transition amplitude of the
theory is then given by the following expression (see, for example, [54]):

TV(g,A) =n*" 3 [ dimy () T1(65) (1.9)
Je € t

where 7 and the so-called quantum dimension dimq (7) are defined in the Appendix A
by (A.4) and (A.5) correspondingly, and V is the number of vertices in A. The last
product in (1.9) is taken over tetrahedra ¢ of A, and (65), is the (normalized) quantum
(67)-symbol constructed from the 6 spins labelling the edges of ¢ (see Appendices D,
E). It turns out that (1.9) is independent of the triangulation A and gives a topological
invariant of M: TV(q,A) = TV(q, M). This invariant is the amplitude of the manifold
M for a non-zero cosmological constant, and A is related to the deformation parameter.

There are several ways to show that the sums defined have something to do with
the gravity path integral. Some of them use perturbative definition of the path integral,
the others are non-perturbative. We discuss and compare them in the next section.

1.3 Perturbative vs. Non-perturbative

A possible route to arrive to the models described is through Chern-Simons theory.
One uses Witten’s trick and rewrites the action of 241 gravity as the difference of two
Chern-Simons actions. One then uses the Chern-Simons perturbation theory to calculate
the path integral. The result can be shown to be equal to the Turaev-Viro amplitude
[564], if one relates the deformation parameter ¢ with A in such a way that & = VA.
Ponzano-Regge model then arises as the A = 0 limit of Turaev-Viro model. This will be
described in details in Section 7.2.

The derivation, whose idea was sketched above, relates the result of path integra-
tion with the topological invariant given by the Turaev-Viro model. However, we would
like to have a more direct derivation, which relates to the path integral each term of the
state sum model, before the sum over spins is taken. One can do this using perturbation
theory and non-perturbatively. For simplicity we consider only the zero cosmological
constant case. Let us first sketch the perturbation theory derivation.



Perturbative derivation

Let us take the perturbative definition of the path integral. To arrive to Ponzano-
Regge model starting from the classical action, let us split the integration over DwDe
into two parts. Namely, let us triangulate the spacetime manifold M, and choose a
labelling of edges e by irreducible representations j,, as we did when we introduced the
Ponzano-Regge model. Let us then integrate over DwDe subject to the constraint that
the holonomies around edges are in the conjugacy classes determined by labels j.. In the
second step, let us sum over all labellings j,. This splitting of the integration into two
steps does not change anything: at the end we have integrated over all DwDe. We would
like to see now that, after performing the first step, one arrives at the Ponzano-Regge
amplitude for a labelled triangulation.

Fig. 1.1. Tetrahedron with parts of the dual cell that lie inside it.

To make this procedure more precise, let me specify what the constraint ‘holonomy
around an edge e is in the conjugacy class determined by j,” means. Let us consider one
of the tetrahedra of the triangulation, see Fig. 1.3. Given a triangulation, one can also
construct a dual simplicial complex. Then faces of the dual complex are in one-to-one
correspondence with the edges of the original triangulation. A part of the dual face that
lies inside the tetrahedron is denoted by w in the figure. The boundary of the dual face
has the topology of s and goes around the edge e. In the first step of the integration
over DwDe we require the holonomy alon?;g the boundary of the dual face to be in the
iJ%j,

conjugacy class of the group element e , where J 3 is the generator of some U(1)

subgroup of SU(2).
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To see why the integration over DwDe subject to this restriction must give the

Ponzano-Regge amplitude
Ildmyegﬂﬁﬁb (1.10)

we have to use two facts. First, it is known that in the path integral of BF theory,
which is what our 241 gravity in the absence of the cosmological constant is, only the
flat connections dominate the path integral (see [17], the chapter on BF theory, for a
discussion of this fact). Second, as it was first noticed by Boulatov [18], the integral of
products of holonomies over a number of copies of the group gives the Ponzano-Regge
amplitude:

11 /dg T dim;x; (T 9) = T dim; [[(65);- (1.11)
dee. d.f. d.f. i

Here the first product is taken over the dual edges, that is, the lines connecting the
centra of tetrahedra. Each of such dual edges is associated a group element g, and the
integration is taken over each g. The second product is over dual faces. The quantity
Xj(H g) is the character of representation j evaluated on the product of group elements
taken around the dual face.

Using these facts one can show that the result of the first step of our procedure
is just the Ponzano-Regge amplitude, up to the subtleties related to the gauge fixing.
Actually what one gets after fixing the gauge properly is the regularized Ponzano-Regge
amplitude, which is the limit of Turaev-Viro amplitude for & = vA — 0.

Thus, Ponzano-Regge model can be derived directly from the path integral of the
theory, when the path integral is defined perturbatively. Similarly one could envisage the
derivation of Turaev-Viro model. This, however, will be much more difficult because the
path integral is not dominated by flat connections anymore, and is not one loop exact. It
will be easier to perform the path integration, with the conjugacy classes of holonomies
around edges fixed, by going to Chern-Simons theory.

To summarize, we see that Ponzano-Regge and Turaev-Viro models are correct
definitions of the path integral, where correct means that it agrees with the that provided
by the perturbation theory. We now consider another derivation of these models.

Non-perturbative derivation

The first direct, without a reference to the perturbation theory, sign suggesting
that Ponzano-Regge model may have something to do with gravity is provided by the
old result of Ponzano and Regge [48] on the asymptotics of the classical (6;)-symbol.
It turns out that, for large spins, the (67)-symbol behaves as the cosine of the Regge
action for one tetrahedron, see section 2.1 for the precise statement. This fact, actually,
motivated the Ponzano-Regge model in the first place. It means that the classical (67)-
symbol ‘knows’ about geometry of the corresponding simplex, and, thus, could have been
derived using only the geometry considerations, without perturbation theory. This point
of view will be further developed in the next chapter. In this section we will present
another, although intimately related, derivation.

Regge calculus [49] was developed as a way to describe gravity ‘without coor-
dinates’, as the title of the original paper suggests. The main idea is that one can
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approximate a curved spacetime by a large collection of simplices glued together. The
interior of every simplex is flat, and the spacetime curvature resides where the simplices
are glued to each other. In three spacetime dimensions this goes as follows. One starts
by triangulating the spacetime into simplices, and assigning arbitrary positive numbers
—length— to every edge. The Regge calculus version of Einstein-Hilbert action then reads:

> 10, (1.12)
ect
Here, as before, we use units in which 87G = 1, and [, 0, are the edge length and the
dihedral angle deficit at the edge correspondingly. Note that the dihedral angle deficits
0, are the functions of length [,. Varying with respect to the length, one gets equations
that can be shown to be the correct ‘discretization’ of vacuum Einstein equations.

Let us try to copy this procedure in the quantum theory. Namely, let us trian-
gulate the spacetime into a collection of tetrahedra, and assume that all the interiors
are flat, the curvature is concentrated only on edges. This means that the classical La-
grangian Tr(e A F') integrated over a single tetrahedron gets contributions only from the
edges:

/tTr(e/\F) — Z/'I‘r(e/\F). (1.13)

Thus, in the case the spacetime is glued from flat tetrahedra, the action of the theory
becomes a sum over the edges. It depends only on the values of the field e along the
edges, and only on the behavior of the connection in the vicinity of the edges.

To make this more precise, we can further approximate the curved spacetime we
are working with. Actually, the following construction can be taken as a part of the
definition of the ‘quantum Regge calculus’. Let us encode all information about the
curvature on an edge e into the holonomy of the spin connection around this edge. This
holonomy is the exponential of some Lie algebra element, which we will denote by Z,:

Z

h. (w) =e”e. (1.14)

Ve
Let us encode all information about the e field on the edge e into the integral of e (which
is a one-form) along the edge:

X, :/ee. (1.15)

The analog of the Regge action then becomes:
> Tr(X.Z,), (1.16)
[

where Tr must be understood appropriately (as the one constructed with the help of the
e-symbol on the Lie algebra). There are certain subtleties related to the fact that Z, is
only defined up to conjugacy, but we will postpone their discussion until Chapter 5.
Thus, what we get is the action, which depends only on variables X, and a
collection of group elements. One can take this action as a starting point for the path
integral quantization. To define the measure, one uses a number of copies of the Lebesque
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measure dX on the Lie algebra as the analog of the integral over e, and a number of
copies of Haar measure dg as the analog of the integral over w. This defines the theory
completely, up to the subtleties related to gauge transformations, which will be discussed
later. The result of this path integral is exactly Ponzano-Regge model. We shall present
all the details of this calculation in Chapter 5.

Thus, what we see is that, to arrive to Ponzano-Regge model, one does not have
to refer to the perturbation theory. One can instead define a Regge type action, which
takes into account the fact that the curvature is concentrated along the edges, and whose
path integral gives the Ponzano-Regge model. In the following chapters we shall see that
this strategy works in any dimension, and gives higher-dimensional analogs of Ponzano-
Regge model. The procedure we shall develop will also give us an analog of the above
derivation for a non-zero cosmological constant, that is, we will be able to see how one
can derive Turaev-Viro model non-perturbatively. However, before we discuss in details
this procedure, let us give more evidence in support of our non-perturbative definition
of the path integral. Let us present another derivation of the Ponzano-Regge model.
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Chapter 2

Geometry and representation theory: 241 dimensions

In this chapter we concentrate on the relation between the group representation
theory and geometry, which is suggested by the Ponzano-Regge result on the asymp-
totics of the classical (67)-symbol. We will show how representation theory is related to
the quantization of a geometric tetrahedron in R®. We shall see how the (67)-symbol
arises as the quantum amplitude for a tetrahedron, and how Ponzano-Regge model can
be constructed as giving the amplitude for the quantized spacetime. The results of this
chapter will serve as an additional guide when we introduce the spin foam models in the
next chapter. Most of the results presented here can be generalized to higher dimen-
sions, which is done in Chapter 9. The following section is devoted to the (67)-symbol
asymptotics. Section 2.2 discusses the quantization of a geometric tetrahedron.

2.1 Asymptotics of the classical (65)-symbol

A classical 6j-symbol is a real number which can be associated to a labelling of
the six edges of a tetrahedron by irreducible representations of SU(2). Its definition is
as follows.

Let V,, where a is an integer, denote the (a + 1)-dimensional irreducible represen-
tation. The SU(2)-invariant part of the triple tensor product V, ® V3 ® V, is non-zero if
and only if

a<b+c b<c+a c<a+b a+ b+ cis even, (2.1)
in which case we may pick, almost canonically, a basis vector eabe.

Suppose we have a tetrahedron, labelled so that the three labels around each face
satisfy these conditions: we will call this an admissible labelling. Then we may associate
to each face an e-tensor, and contract these four tensors together to obtain a scalar, the
67-symbol, denoted by a picture or a bracket symbol as in figure 2.1.

This tetrahedral picture is traditionally used simply to express the symmetry of
the 6j-symbol, which is naturally invariant under the full tetrahedral group S;. However,
it has a deeper geometric significance. To an admissibly-labelled tetrahedron we may
associate a metric tetrahedron ¢ whose side lengths are the six numbers a,b, ..., f. Its
individual faces may be realized in Euclidean 2-space, by the admissibility condition
2.1. As a whole, t is either Euclidean, Minkowskian or flat (in other words has either
a non-degenerate isometric embedding in Euclidean or Minkowskian 3-space, or has an
isometric embedding in Euclidean 2-space), according to the sign of a certain polynomial
in its edge-lengths, see below. If ¢ is Euclidean, let 6,60, ... ,Of be its corresponding
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Fig. 2.1. Pictorial representation

exterior dihedral angles and V' be its volume. The following theorem has been proven
by Roberts [55]:

THEOREM 2.1 (ROBERTS). Suppose a tetrahedron is admissibly labelled by the numbers
a,b,c,d,e, f. Let k be a natural number. As k — oo, there is an asymptotic formula

ka kb kc [ 2 0, w

if t 1s Euclidean, and is exponentially decaying if t is Minkowskian.

The sum in the argument of cosine is taken over all edges of the tetrahedron. The
quantity V' in the denominator in front of the cosine is the volume of the corresponding
geometric tetrahedron. A (slightly different) version of this formula was conjectured in
[48] by the physicists Ponzano and Regge, building on heuristic work of Wigner; they
produced much evidence to support it but did not prove it.

This formula means that there is a relation between representation theory of SU(2)
and the geometry of R3. A possible way to unravel this relation is through geometric
quantization, and this is the route followed by Roberts [55] in his proof of the theorem.
In Chapter 9, where we obtain analogous results in higher dimensions, we shall follow
another route, and study the relation between geometry and representation theory from
the point of view of harmonic analysis on the group.

The fact that the (6j)-symbol, an object that appeared solely in the realm of
representation theory, without any reference to geometry, has something to do with
Euclidean geometry is fascinating. It motivated Ponzano and Regge to propose their
model of quantum gravity, and it suggests that one can use group representation theory
to describe quantum geometry.

The result on the asymptotics is not the only fact that suggests the relation
between geometry and representation theory. In fact, there are analogous results that
were known to mathematicians for a long time. It is known, for example, that the
asymptotics of the classical (3j)-symbol is related to a triangle in Euclidean space, see,

g., [61], Chapter 8. The relation between representation theory of SU(2) and geometry
of Euclidean 3-space was also discovered by Penrose [45] in his work on spin networks.
His results were of much importance for the development of loop quantum gravity.
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From a mathematical point of view, this relation between geometry and repre-
sentations is not that surprising. Indeed, it is well-known that representation theory
of a particular group is intimately related with the harmonic analysis on this group.
One can realize irreducible representations in the space of functions on the group that
are eigenfunctions of the Laplace operator. These eigenfunctions ‘know’ a lot about the
geometry of the group manifold, and the information gets encoded in the properties of
irreducible representations.

The subject of representation theory and harmonic analysis on group manifolds
is extremely rich mathematically. In fact, its development was very influential, and, in
many ways, shaped the contemporary mathematics. However, in fundamental physics
these beautiful constructions play hardly any role. It is one of the ambitious aims of this
program to bring these results into physics, by using representation theory to describe
quantum geometry. As the first step towards this goal, we consider the quantization of
a geometric tetrahedron in 2+1 dimensions.

2.2 Quantization of a geometric tetrahedron

The results of this section build upon the work of Barbieri [11], Baez [9], Barrett
and Crane [12]. The idea to study quantum geometry by considering quantization of a
geometric simplex belongs to Barbieri. It was generalized to four dimensions by Barrett,
Crane and Baez. What is presented here is the one-dimension-down analog of their
procedure.

©)

©)
(€

@

Fig. 2.2. Geometric tetrahedron

A tetrahedron in Euclidean 3-space is completely characterized (up to rotations
and translations) by 6 numbers — edge length. The edge lengths must satisfy triangle
inequalities, and a certain polynomial constructed from them must be positive. More
precisely, let us introduce the following labelling of the edges. Let us label one of the
vertices by (0), and other three vertices by (1), (2),(3), see Figure 2.2. The edges are
now labelled by two indices, for which we will use small Latin letters from the beginning
of the alphabet. Thus, the triangle inequalities read:



16

lab < lac + lbc’ (2.4)

where [ is the length of the edge going from vertex (a) to (b), I,y = lpgslaa = O-
In order for six numbers [;; to correspond to the length of the edges of a tetrahedron
that is isometricaly embeddable into Euclidean space, the following determinant must
be positive:

0z21 1
2 ? ?1
2_ 1 | % 2 53
Vo= 23(31)2 %0 150 ) lig 1 (2:5)
%131 0 1
1 1 0

Here V is just the volume of the tetrahedron. If this determinant is negative, then the
tetrahedron can be isometricaly embedded into 3-space of Lorentzian signature.

Another way to characterize a tetrahedron is by specifying (up to rotation) a triple
of vectors egq, eg9,ep3- Or, instead, one can characterize a tetrahedron by a collection
of 6 vectors e, = —ep,, satisfying an obvious constraint:

€qb + €pe T €cq = 0. (2.6)

One can easily see that we did not increase the number of degrees of freedom: each
vector is specified by 3 numbers, and we have 6 of them, so we have 18 DOF. We then
have to impose 4 constraints, one for each face, but only 3 of them are independent,
which leaves us with 3 x 3 equations. Thus, we have 9 DOF left after we impose the
constraints. After modding out by rotations, we get 6 DOF, as needed.

Each of the vectors e, is an element of the vector space R3. Let us now quantize

these vectors. The idea is to identify ]R3, where the vectors live, with the Lie algebra
of SU(2) (more precisely, with the dual to the Lie algebra, which is naturally a Poisson
manifold). That is, we make our R3 a Poisson manifold, so that the components of
vectors do not commute with respect to the Poisson structure. This Poisson manifold
can then be quantized, which should be intuitively thought of as being the quantization
of vectors e,

After quantization, the vectors e,; become operators in some Hilbert space. This
Hilbert space can be obtained using representation theory of SU(2). Indeed, represen-
tation theory studies representations of group elements, and Lie algebra elements, by
operators in a Hilbert space. This is exactly what we need, because our e, are iden-
tified with elements of the (dual to the) Lie algebra. Thus, for each vector eg,p, and,
therefore, edge (a)(b), one gets the Hilbert space:

H=a;V, (2.7)

where V7 is the Hilbert space of the irreducible representation of the dimension 2j + 1,
and the direct sum is taken over all irreducible representations. The original vectors e
become operators, each in its own copy of #, so that different vectors commute. Note
that each V”/ in the sum can be thought of as the Hilbert space corresponding to the
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edge having the length 12 = j(3 + 1), which is the value of the quadratic Casimir in this
representation. Thus, what we have starts to remind a quantization of geometry.

Thus, we have associated each edge a copy of the Hilbert space H. Let us now try
to find quantum analogs of constraints (2.6). Each of this constraints corresponds to a
particular face of our tetrahedron. Thus, let us construct a Hilbert space corresponding
to a face, an then impose the constraint (2.6) as an operator equation in this Hilbert
space. Since face is a collection of 3 vectors, it is natural to associate with is the Hilbert
space H ® H ® H. The constraint (2.6) becomes:

e®191+1Qe®1+1Q01®e=0, (2.8)

where e is the operator representing the vector e, and 1 is the identity operator. Equation
(2.8) has an obvious meaning: its solutions are invariant tensors from the tensor product
HE3, Recalling that H is the direct sum of irreducible representations, the space of
invariant tensors can be nicely described as the space of all trivalent intertwiners. A
trivalent intertwiner is a map I : VieVIi®VF - C invariant under the diagonal action
of the group on the tensor product. The space of such intertwiners is either zero or
one-dimensional. It is one dimensional only if the collection of spins i, j, k satisfy the
triangle inequalities, and ¢ + 7 + k is an integer.

Thus, what we find is that one can associate each face a Hilbert space, which is
just the direct sum of one-dimensional Hilbert spaces generated by trivalent intertwiners.
The trivalent intertwiners are just the usual (35)-symbols, or Clebsch-Gordan coefficients.
We find that they are naturally associated with the faces of our tetrahedron, or with
triangles. This is in agreement with the known fact that the asymptotics of the (3j)-
symbol for large spins “knows” about the area of the triangle constructed on the three
spins as length: the asymptotics behaves as the inverse of the square root of the area,
see [61], Chapter 8.

Having found the Hilbert space corresponding to a face, we now have to glue the
faces to form a tetrahedron. This is achieved by “gluing” of the four Hilbert spaces
corresponding to the faces. A natural way to do this is to look for maps from the tensor
product of the four Hilbert spaces corresponding to the four faces to numbers. The
result must be invariant under the diagonal action of the group, thus we have to take
invariant maps. In other words, we have to construct a number from four (37)-symbols
corresponding to the faces, and this number must be invariant under the action of the
group. There is only one such number: the classical (67)-symbol.

Thus, the (67)-symbol naturally arises when one quantizes a geometric tetrahe-
dron. One can have two interpretations of this quantity. First, one can say that the
(67)-symbols are vectors in the Hilbert space, which is the result of quantization of the
tetrahedron. This Hilbert space is the direct sum of one-dimensional Hilbert spaces
generated by (67)-symbols. The other interpretation is that each (67)-symbol gives the
quantum amplitude for the tetrahedron on the condition that the 6 length of the edges
are specified.

This is this second interpretation that suggests the state sum model. Indeed, since
each (67)-symbol gives the amplitude for a tetrahedron, one can obtain the amplitude
for the triangulation by multiplying the tetrahedron amplitudes. The interpretation of
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this number is the amplitude of the triangulation given that the length of the edges of
all tetrahedra are specified.

This is almost the Ponzano-Regge amplitude, as it was described in the previous
chapter, or the most important part of it: the product of (67)-symbols. However, what
we cannot get by quantizing single tetrahedra is the other part of the Ponzano-Regge
amplitude: the product of dimensions of representations. This is natural, because our
procedure of quantization of a single tetrahedron concentrated on a single simplex of the
triangulation, not on the triangulation as a whole. Thus, we might have well missed some
parts of the triangulation amplitude that have to do with how the simplices are glued
together. In 241 this part can be found by bringing in the other input: the requirement of
triangulation independence. In one wants the amplitude to be triangulation independent,
one has to include in the amplitude the product of dimensions.

Thus, the quantization of a geometric tetrahedron allows us to understand the
essential elements of the Ponzano-Regge model: (67)-symbols. We see that they appear
as the amplitudes for the simplices of the triangulation. What the results of this section
cannot tell us is how to glue this amplitudes together to obtain the amplitude of the
triangulation. This requires an additional input, which in 241 dimension is provided by
the requirement of triangulation independence.

The quantization of a geometric simplex can be generalized to higher dimensions.
In fact, this quantization was first proposed and studied for the case of a four-simplex
[9, 12]. The results on quantization of a geometric four-simplex were very influential,
for they motivated the development of the idea of spin foam models. However, we can
also see the limitations of such results. Indeed, by concentrating on the quantization
of a single simplex it is hard, if not impossible, to find the amplitude corresponding to
the whole triangulation. This requires an additional input, which in 241 dimensions
was given by the triangulation independence. In higher dimensions this property is not
expected to be true, for it has to do with the topological property of gravity in 2+1
dimensions. Thus, in higher dimensions some other input is necessary. As we shall
see in the following chapters, this input is given by the classical action of the theory.
The procedure we propose allows one, by starting from the action, and defining the
corresponding path integral, not only to obtain the amplitude for a particular simplex
of the triangulation, but to get the amplitude for the triangulation as a whole. However,
the geometric results of this chapter, and their higher-dimensional analogs described
below serve as an important piece of intuition behind the spin foam models. Thus,
they are certainly worth developing. These results are also exciting because they show
that, by quantizing the classical geometry, without any reference to the classical action,
one arrives to the quantum amplitude whose semi-classical limit is related to the usual
Einstein-Hilbert action for gravity. This gives hope that quantum gravity indeed can be
obtained as the quantization of geometry.
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Chapter 3
Introduction to spin foams

In the previous two chapters we have seen how, by using a quantum version of
Regge calculus, or by quantizing a tetrahedron in 241 dimensions, one can give sense to

the path integral
/’Dw’De e’ Jm Tr(enF) (3.1)

In this chapter, motivated by the above results, we will try to give a more precise
definition of such path integral. The results of the following chapters build upon the
work of Freidel and myself [29].

To give a definition to the path integral of the type above, we consider a more
general theory. Let us fix the dimension of spacetime to be D, and consider the action
of the type

/M [Tr (EAF) + ®(E)], (3.2)

where E is the Lie algebra valued (D — 2)-form field (for instance, B field of BF theory,
which we discuss below), F is the curvature of the connection form A and & is certain
(polynomial) function of the E field, which can also depend on some Lagrange multipliers,
as in the case of gravity, or on an additional background structure, as, for example, a
fixed metric on M in the case of Yang-Mills theory. Below we will give many examples
of theories belonging to this class. Thus, the action is that of the BF theory with an
additional term. We call the B field E because of its relation with the non-abelian
‘electric’ field of the canonical formulation.

Below we will propose a definition of the path integral for such a theory. This
definition will generalize the ideas we described above to an arbitrary spacetime dimen-
sion, and to a much larger class of theories than 241 gravity considered so far. We shall
first propose a definition and then study it on various examples to see whether it makes
sense.

The main idea of our proposal is very similar to the one that we used in the non-
perturbative derivation of Ponzano-Regge model in section 1.3. Namely, we triangulate
the spacetime manifold into simplices, and then approximate the continuous fields E, A
by fields living on the elements of the triangulation. Thus, our procedure is a version
of ‘quantum Regge calculus’, where smooth dynamical variables are approximated by
distributional fields living on the boundaries of simplices.

Let us briefly remind the reader what was done in section 1.3. In 2+1 dimensions,
we approximated the curvature F' by a distributional field concentrated on the edges.
The action of 2+1 gravity then becomes a sum over edges. It can be written in a simple
form by introducing variables X, and Z,: analogs of variables e and w of the original
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action. The path integral over X,, Z, then makes sense and can be calculated. In 2+1
dimensions this procedure reproduces Ponzano-Regge model.

It turns out to be more convenient, however, to approximate the E field, not the
curvature, by a distributional field. The idea is to say that E field is concentrated along
the dual faces of the triangulation, see Fig. 1.3 to recall what the dual face is. In 241
dimensions, or, more generally, when one deals with the pure BF theory, it does not
matter whether one makes FE or F distributional. The resulting action in both cases
is given by the sum over edges, or, because of the one-to-one correspondence between
the edges and dual faces, by the sum over dual faces of Tr(X,Z,). However, when one
considers more complicated theories, whose action is of the type described above, it is
essential to make the F field distributional. This, as we shall see in numerous examples,
allows us to make sense of the term ®(FE) in the action, and allows one to calculate the
path integral.

Another reason why it is more natural to make the E field distributional is that
the dual faces along which it is concentrated are always 2-dimensional, independently of
the dimension of spacetime. On the other hand, the curvature F is concentrated along
(D — 2)-fases of triangulation, and this changes from dimension to dimension.

There is yet another reason to make the F field distributional, which also serves
as an additional justification for our procedure. This justification comes from the canon-
ical quantum theory. The phase space of all theories we work with, as it can be seen
from the above action functional, is that of Yang-Mills theory. The space of quantum
states of the canonical theory is then given by L2(.A/ G), where A/G is the space of
connections on the spatial manifold modulo gauge transformations, and L2 is defined
by an appropriate choice of measure on this space. In the case the spatial manifold is
one-dimensional, there exists quite a natural choice of this measure: the functionals on
A/G are just class functions, and it is natural to use the Haar measure on the group
to define the inner product of such functionals. In higher dimensional cases, an anal-
ogous construction of LQ(A/G) was developed [6, 3] within the approach of canonical
(loop) quantum gravity. In this construction, integrable functions arise by considering
the so-called cylindrical functionals, that is, functionals that depend on connection only
through holonomies along some paths in space. In other words, one constructs the space
of states of the theory by considering spaces of states of lattice gauge theories on graphs
in space, and then taking the projective limit over graph refinements (see [6, 3] for de-
tails). A characteristic feature of the quantum theory constructed with such a space of
states is the distributional nature of the electric field operator. Let us illustrate this on
the case of (2+1) dimensional theory. A typical state from LQ(A/g) depends on the
connection only through holonomies along some paths in space. Let us denote the edges
of such a graph by e;. Then a typical state supported on this graph is of the form

© (hey (A),-.. e (4)),

where hei (A) is the holonomy of A along the edge e;, and ¥ is a function with sufficiently
good behavior. The electric field E, which classically is a canonically conjugate quantity
to A, quantum mechanically becomes the operator §/6A(z) of variational derivative with
respect to A. This operator, when acting on a typical state, gives zero for all points z
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except the points lying on the edges e;, where the result is distributional. Thus, in a
typical quantum state, the electric field E is distributional with support on edges e; of the
corresponding graph. One normally views a state of the canonical theory as a state “at a

Fig. 3.1. A typical quantum state of (24+1) dimensional theory is labelled by a graph
in space. The corresponding functional of connection depends on A only through
holonomies along edges e;. The electric field in such state is distributional and con-
centrated along the edges e;.

given time”. Thus, electric field “at each given time” is distributional and concentrated
along edges of the graph. This suggests that one should think of the “history” of the
electric field configuration as of a collection of two-dimensional surfaces in spacetime,
along which the electric field is distributional. When sliced by a spatial hypersurface
“at given time”, such a collection of surfaces gives a graph in space, and electric field is
distributional along the edges of this graph. These heuristic considerations suggest that
one should consider configurations of E field that are distributional and concentrated
along two dimensional surfaces in spacetime.

Thus, to define the path integral for a theory of the class we described above, we
propose a version of “quantum Regge calculus”, in which the smooth fields get replaced
by the distributional ones. At the very least, this can be taken as a definition of the
measure in the path integral. One must then test this definition on a number of examples
to see whether it reproduces results one expects. We will test our approach on the exact
results coming from Topological QFT’s. As we shall see, for a large class of theories our
approach gives results that are in a good agreement with the known state sum models.

To calculate the path integral, we will first calculate it over the distributional
fields “living” on a fixed collection of surfaces in spacetime. In the case of topological
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theories, the result for a particular fixed collection of surfaces does not depend on the
collection. One cannot expect this property to hold for such theories as gravity, which
is not a topological theory. Thus, one might want to perform a sum over all possible
collections of surfaces in spacetime, or take a limit as the triangulation becomes more
refined. We comment on this problem only in the last chapter. Thus, the bulk of what
we discuss is about how to make sense of the path integral for a fixed triangulation of
the spacetime.

Our other main idea is to use a certain analog of perturbative expansion for the
theories we consider. Usual interactive quantum field theories have been successfully
understood using perturbative expansion in terms of Feynman graphs. In this case
the interacting QFT is considered as a perturbation of a free field theory. From a
technical point of view, what makes this approach successful is the exact solvability of
the free field theory, i.e., our ability to compute all possible correlation functions. All
correlation functions can be encoded in the generating functional, and Feynman graphs
can be viewed as the evaluation of certain differential operators acting on the generating
functional.

We will employ a somewhat similar strategy. In order to calculate transition
amplitudes for our class of theories we will use the machinery of generating functionals.
In our approach the role of the “free” field theory is played by the BF theory and the
terms in the action polynomial in £ are analogous to the “interaction” terms. The idea
to use the BF theory as a “free” field theory is not new: it has been applied with some
success in the context of Yang-mills theories (see [34]). However, the details of how the
BF theory is used in our approach differ from those of [34]. In order to calculate a
transition amplitude, i.e., the path integral of the exponentiated action

/ DADE ot J[TH(EAF)+3(E)]

7

we formally rewrite this path integral as

(Jf (i) zm) ,

J=0

where
Z10] = /DADE o4 JIT(EAF)+Te(EAJT)]

We shall refer to Z[J] as generating functional. Here J is Lie algebra valued two form
field. Using terminology from field theory we will call the J field current. One of
our main results is the exact computation, in the context of spin foam models, of the
generating functional Z. It is obtained by integrating over fields A, E that “live” on a
fixed triangulation of the spacetime manifold. Then the transition amplitude for any
theory of the type we consider is given as a formal power series in variational derivatives
0/4J with respect to the current field. The series we get are quite reminiscent of the usual
Feynman diagram expansions. Thus, the powerful technique of generating functionals
allows us to study different theories —such as BF theory and gravity— from the same
point of view.
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Thus, our strategy will be to first calculate the generating functional in various
dimensions, and then use the result to calculate the path integral for different theories.
We will also be able to compare the results of our approach with exact results coming
from topological field theories. The agreement we find serves as an additional justification
for the procedure. Finally, we shall apply our quantization procedure to gravity. It will
allow us to make sense of and study the gravity path integral in any dimension.
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Chapter 4

BF theory

As it was clear from the previous chapter, BF theory will play a special role in
our approach, in the sense that all theories we consider are obtained as perturbations of
BF theory. This makes it desirable to first study the pure BF theory in more details. In
this chapter we review what is BF theory and what is known about its quantization.

This theory, together with the name, was invented and first studied by Horowitz
[35], the motivation being the results coming from 2+1 gravity. It was then extensively
studied in the context of topological field theories.

The action of BF theory in any dimension is given by

/M Te(E A F), (4.1)

that is, this is the action of the type we described in the previous chapter with zero
“interaction” term ®. The equations of motion that follow from this action state that

dyE =0, F =0, (4.2)

where d 4 E is the covariant derivative of E. Thus, the flat connections play the dominant
role in BF theory.

The path integral for BF theory can be defined perturbatively, see, e.g., [17] for
a discussion of this. The flat connections are known to dominate the path integral,
and the theory is one loop exact. Another definition of the path integral is given by
higher-dimensional analogs of Ponzano-Regge model. The case of three dimensions,
which is what Ponzano-Regge model corresponds to, was described in section 1.2. A
four-dimensional analog of this model was discovered by Ooguri [44], whose work was
motivated by the work of Boulatov [18]. The description of this model is as follows. One
starts by triangulating the spacetime manifold M into 4-simplices. For simplicity, let us
fix the gauge group to be SU(2), and label the faces f of triangulation by spins j f- Let
us consider the following quantity:

o) = > Hdimijdimth(wj)h, (4.3)
psr f t h

After a certain “regularization” (given by the Crane-Yetter model, which we describe
below) that gives meaning to the infinite sums in (4.3), this can be shown to be triangula-
tion independent: O(A) = O(M). In (4.3) one has introduced an additional label j; for
each tetrahedron of A. The spin j; labels an intertwiner one has to assign to each tetra-
hedron (see the section on Crane-Yetter model for details). The last product is taken



25

over the 4-simplices h of A. Then (15j) is the (normalized) (15j)-symbol constructed
from ten spins j f labelling the faces of h and five spins j; labelling the five tetrahedra
composing h. See the Appendix D for a definition of the normalized (15j)-symbol.

As was realized by Boulatov and Ooguri [18, 44], this model, and the original
Ponzano-Regge model, give a “discrete” realization of the path integral because they can
be obtained from the requirement that the connection on M is flat. Indeed, formally
the path integral of the BF theory is equal to

/ DAS(F). (4.4)

The state sums (1.7),(4.3) are in certain precise sense realizations of the integral over
connections with the integrand being the delta-function at #' = 0. Using this relation
to the delta-function on the group, these models can be easily generalized to higher
dimensions. The resulting model will be described in section 5.5, after we compute the
generating functional.
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Chapter 5
BF theory with a source. Generating functional

As we explained in Chapter 3, to calculate transition amplitudes for a theory of
the type we consider here it is very convenient to first calculate the generating functional
of BF theory. Then transition amplitudes can be obtained as formal power series in the
derivatives with respect to the current. In this chapter we calculate the generating
functional of the BF theory, i.e., the path integral

Z17] = /DADE ez’f[Tr(E/\F)+Tr(E/\J)] (5.1)

in various dimensions. Here A is a connection on the principal G bundle over the space-
time manifold M, where G is the gauge group of the theory, which we assume to be
semi-simple, F' is the curvature 2-form of the connection, FE is a Lie algebra valued
(D —2)-form field, where D is the dimension of M, and J is a Lie algebra valued current
2-form. For simplicity, we consider here only the case when the spacetime manifold M is
closed. Although for practical applications of spin foam models one is usually interested
in the case when M has a boundary consisting of “initial” and “final” spatial hypersur-
faces, we do not consider this here because all non-trivialities arise already in the case of
closed M. At any rate, the inclusion of boundaries is straightforward, and all our formu-
las can be easily generalized to this case. To give meaning to the path integration over
spacetime fields A4, E, we replace the FE field by certain distributional field concentrated
over two-dimensional surfaces in spacetime. To make contact with the known state sum
models we put our fields on the 2-dimensional cellular complex dual to some triangula-
tion of the spacetime manifold. In each particular calculation this triangulation is fixed
and all results explicitly depend on it. We first investigate the generating functional in
a general case, without specifying the dimension of spacetime manifold, and then find
an explicit expression for it in each particular dimension.

5.1 General framework

Let us fix a triangulation A of a D-dimensional compact oriented spacetime man-
ifold M. This triangulation defines another decomposition of M into cells called dual
complex. There is one-to-one correspondence between k-simplices of the triangulation
and (D — k)-cells in the dual complex. We orient each cell of the dual complex in an
arbitrary fashion, which also defines an orientation for all simplices of the triangulation.
The (D — 2)-form E can now be integrated over the (D — 2)-simplices of the triangu-
lation the result being a collection of the Lie algebra elements X — one Lie algebra
element X for each 2-cell dual to a (D — 2)-simplex of the triangulation. We would like
to discretize our action by replacing the continuous E field by the collection of the Lie
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algebra elements X. It turns out, however, that this is not yet the most convenient set
of variables for the theory. For reasons which we give below, we use another, more con-
venient set of variables introduced by Reisenberger [52]. These variables are motivated
by the fact that, in the case of BF theory one has to use them if one wants to reproduce
a triangulation-independent state sum model for the case the topology of dual faces is
different from that of a disc. Another motivation for using the wedge variables is, as
we explain below, that they appear naturally when one tries to implement the gauge
symmetry in the theory.

Thus, instead of a single X for each dual face, we introduce a set of variables,
which we call X,,,. To do this, we divide each dual face into wedges (see Fig. 2). To
construct wedges of the dual face one first has to find the center of the dual face. This
is the point on the dual face where it intersects with the corresponding (D-2)-simplex
of the triangulation. One then has to draw lines connecting this center with the centers
of the neighboring dual faces. The part of the dual face that lies between two such
lines is exactly the wedge. Thus, each dual face splits into wedges, and we assign a
Lie algebra element X, to each wedge w. Wedges of a given dual face are in one-to-
one correspondence with the D-simplices of the triangulation neighboring this dual face.
Thus, the physical meaning of each variable X, can be said to be the integral of E over
the (D-2) simplex of the triangulation “from the point of view” of a particular D-simplex
containing this (D-2)-simplex. Note that the number of variables X, that arises this
way for a given triangulation is equal to the number of D-simplices times the number of
(D—2)-simplices in each D-simplex.

;}b

Fig. 5.1. A face o of the dual triangulation. The portion of ¢ indicated by bold lines
is what is called wedge. The point labelled by C' is the center of one of the D-simplices
neighbored by o.

Having discussed the geometrical meaning of the wedge variables X, we are ready
to introduce the distributional E fields. Heuristically, our procedure of replacement of a
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smooth F field by a distribution concentrated along the wedges amounts to “squeezing”
of the smooth E field that is “spread” over a (D-2)-simplex of the triangulation to a
single point on this (D-2)-simplex, the point where the simplex intersects with the 2-cell
of the dual complex. Thus, we define a distributional field E,, concentrated along a
wedge w to be a 2-form satisfying the following relation:

/ Te(E, A J) = Tr(X,, / 7). (5.2)
M w

Here J is any Ad(P)-valued 2-form, and w stands for a wedge. The integral on the
right-hand-side is performed over the wedge w. This, in particular, implies that the
Lie algebra element X, is equal to the integral of E,, over the (D-2)-simplex of the
triangulation that is dual to the 2-cell 0. We then define distributional field E to be

E =) E,. (5.3)

To calculate the generating functional Z as a function of a fixed triangulation A,
we have to take the integral of the exponentiated action over the “discretized” dynamical
fields A, E, that is, the fields “living” on the triangulation A. The “discretized” action,
that is, the action evaluated on the distributional field E, becomes a function of the Lie
algebra elements X, and a functional of connection A and current J. Using (5.2),(5.3),
we find that this discretized action is given by

3 /w [Te(F X)) + Tr(J X,)] (5.4)

where the sum is taken over the wedges of faces of the dual complex (‘w’ stands here
for a wedge), and the integral is performed over each wedge, the integrand being the
curvature of the connection A contracted with the Lie algebra element X, “living” on
that wedge plus the current J contracted with X,,,. Each integral is performed using the
orientation of the dual face to which the wedge belongs.

We could now substitute this discretized action into the path integral and integrate
over X and A. However, we first have to discuss what measure has to be used to integrate
over X, A. To give meaning to the integration over A, let us replace a continuous field
A by a collection of group elements. To do this we use the following approximation

/ Te(F X,) ~ Tr(Zy X,p), (5.5)

where Z,, is the Lie algebra element corresponding to the holonomy of A around the
wedge (see Fig. 3). The base point of the holonomy is not fixed at this stage (see below).
In other words,

exp Zy, = g1h1hogo, (5.6)

where g1, hq, ho, g9 are the holonomies of A along the four edges that form the boundary
of the wedge w. We assume a local trivialization of the bundle over w so that the
holonomies are group elements. The order in which the product of group elements is
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01

hi1

Fig. 5.2. A wedge w of the dual face and the group elements: holonomies along the
edges of w.

taken is determined by the orientation of the dual face. Of course, exp Z,, is defined only
up to its conjugacy class (any of the four edges can be taken to be the “first”). Thus,
there is an ambiguity in the choice of the base point for the holonomy, which we have to
fix in some way. To fix it we define a notion of “discretized” gauge transformation and
fix the ambiguity requiring the discrete action to be gauge invariant.

But first, let us replace the continuous current field J by a collection of Lie algebra
elements J,,,:

T, = /w T (5.7)

Here, to perform the integration, a trivialization of the bundle over the wedge w is
chosen. The discretized action now becomes

> Tr(Zy Xy) + Tr(Jy, X)) (5.8)

We fix a definition of Z,,, in such a way that this action is gauge invariant.

We define the discrete gauge transformation so that it “acts” in the center of each
d-simplex. More precisely, a gauge transformation is parameterized by a collection of
group elements: a group element g for each d-simplex. First of all, the gauge transfor-
mation is defined for the holonomy U of the connection along any loop that starts and
finishes at the center C of the d-simplex. The transformation is as follows:

U— gUg_l. (5.9)
The wedge variables X, and the discrete current variables J,, transform as
-1 -1
Xw = 9Xwg 5 Ty = 9Jpg - (5.10)

With this definition Tr(X,,Z,,) is gauge invariant only when exp Z is defined as the
holonomy around the wedge w whose starting and final point is the center C' of the
d-simplex, as in (5.6). This fixes the ambiguity in Z,,. With Z,, defined this way the
discretized action is gauge invariant.
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The approximation (5.5) is good for Z,, close to zero element in the Lie algebra.
Thus, this approximation is certainly justified for BF theory, where we expect only
connections close to flat to matter in the quantum theory. It is harder to justify this
approximation for theories, for which the classical equations of motion do not imply the
connection to be flat, as is the case, for example, for BF theory with cosmological term or
for gravity. However, even for such theories, one would expect the approximation (5.5)
become better as the triangulation of the manifold becomes finer and the dual faces
become smaller. In quantum gravity we expect finer triangulations to matter most,
which can serve as a justification for the above approximation in the case of gravity. The
approximation (5.5) will be additionally justified when we discuss the problem of the
integration over X, variables. To define the later we will refer to a certain standard field
theory calculation for BF theory in two dimensions. As we shall see, the approximation
(5.5) is quite natural from the point of view of 2D BF theory.

The approximation (5.5) finishes the discretization procedure for the classical
action. We can now calculate the path integral for the generating functional Z by
integrating the exponentiated discrete action (5.8) over the Lie algebra elements X,
and group elements g, h. This path integral is given by

_ ) Zw Tr(Xwa)+Tr(Xwa)
Z(J,A) H/SU(Q) dgH/SU(z) dh/l;[dee . (5.11)

Here the integrals are taken over all group elements g, h, entering the expression through
Z, see (5.5). These integrals form the discrete analog of DA, dg is the normalized Haar
measure [dg = 1 on SU(2). The integrals over X, present here — one for each edge -
form the analog of the integral over DE. The measure dX here is some measure on the
Lie algebra. For now, we will leave this measure unspecified.

Let us now investigate the structure of the path integral (5.11). To calculate Z
we have to find the function of exp Z,,,exp J,,, that is given by

In fact, it is not hard to see that this function is proportional to the J-function of exp Z,,
peaked at exp J,,,. The proportionality coefficient can be a gauge invariant function of
Jy- As we explain below, this function must be set to be equal to P(J,,), where P is
the function that relates Lebesgue measure on the Lie algebra and Haar measure on the
group (see the Appendix B). Thus, as the result of (5.12) we get:

P(J,,)6(exp Z,, exp Jy,), (5.13)

where ¢ is the standard d-function on the group. In case the gauge group is SU(2), the
function of Z,,, J,, given by (5.12) can be written as

P(Jy)>. dim;x ; (exp Z,, exp J,), (5.14)
J
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where we used the well-known decomposition of d-function on the group SU(2) into the
sum over characters X (exp Z,, exp J,,) of irreducible representation. Here the sum is
taken over all irreducible representations of SU(2) (labelled by spins j), and dim; =
(27 + 1). For other groups one has a similar decomposition.

Thus, for the case of SU(2) we find that

Z(J,A) = H/SU(2) dgH/SU(Q) dhl;[P(Jw) Zdimijjw (exp Z, exp Jy,). (5.15)

Jw

The integration over the group elements can now be easily performed using the well-
known formulas for the integrals of the products of matrix elements. However, let us
first give a systematic derivation of the result (5.13).

To give a systematic calculation of the integral (5.12) we relate it to a more
complicated integral, for which a precise result is known from 2D BF theory calculation.
Let us restrict our attention to a particular wedge w. We can restrict the bundle P to
w and get a G bundle P, over w. Let A be a connection on P, and E be an Ad(P)
valued O-form. Consider the following path integral:

/ DADE exp (z /w [Tr(F E) + 'I‘.r(JE)]) , (5.16)

where the integration over A is performed subject to the condition that the connection
on the boundary of w is fixed, and J is given by

J = 6(p)J,y, (5.17)

where p is an arbitrary fixed point on w, and Jy, is the same as in (5.12),(5.13). The path
integral (5.16) is just a partition function of BF theory on the disk with the distributional
source given by (5.17). This partition function can be derived using results of [16]. The
result is given by (5.13), where Z,, is the Lie algebra element that corresponds to the
holonomy of A along the boundary of w. We will not present this calculation here.
Instead, we refer to the calculation performed in [16] for the partition function of 2D
BF theory on a punctured sphere. The result (5.13) can then be checked by taking
the partition function on the disk (equal to d(g), where g is the holonomy along the
boundary of the disk), and integrating it with (5.13) over dg. This must give the partition
function on a punctured sphere, and indeed reproduces the result given in [16]. The only
cautionary remark we have to make is that the calculation performed in [16] finds a
gauge invariant partition function, that is, the one in which one takes J = § Q))thh_l
and integrates over dh. The techniques developed in [16] can be used only to calculate
gauge invariant quantities, and are not directly applicable to the integral (5.16). Thus,
strictly speaking, using the results of [16] one can only argue that (5.16) is equal to

P(J,)8(eZwheTwn Ly, (5.18)

where h is some group element. To get rid of A in this expression, and, thus, to get
(5.13), we will recall how “discretized” gauge transformations act on the Lie algebra
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elements Z,,,J,,, see (5.9),(5.10). The result of (5.12) must be invariant under this
gauge transformations. It is not hard to see that this fixes h above to be unity, thus,
giving (5.13).

Having discussed how one can calculate the path integral (5.16), let us now show
that this path integral is, in fact, equivalent to (5.12). Indeed, the integration over E in
(5.16) can be performed in two steps. First, one integrated over E(x),z # p, then one
integrates over E(p):

/de /E(p):X ’DE/DAexp (z’/w[Tr(FE) +Tr(JE)]). (5.19)

Since the current is distributional and concentrated at point p, the last term in the
exponential does not matter when one integrates over DE, DA. On the other hand, it is
not hard to see that

/. x. PP e (z / ’I‘r(FE)), (5.20)

where the integral over A is taken with A on the boundary of w fixed, is equal to

T2y Xop) (5.21)
where exp Z,, is the holonomy of A along the boundary of w. Putting this back to (5.19)
one gets exactly (5.12). This finishes our discussion of the derivation of (5.13).

Having discussed the derivation of the expression (5.15) for the generating func-
tional, we can now perform the integrals over the group elements. Integration over the
group elements h that correspond to edges dividing dual faces into wedges is the same
in any dimension, and we perform it here. The rest of the group elements corresponds
to edges that form the boundary of the dual faces. The integration over these group
elements g is different in different dimensions, and we perform it in the following sub-
sections. Each group element & is “shared” by two wedges; thus, we have to take the
integral of the product of two matrix elements. Such an integral is given by (D.3) of the
Appendix. Integrating over all these edges, and making a simple change of variables to
eliminate trivial integrations, we find, for the case of SU(2):

Z(J,A) = g/su(z) dg. x (5.22)

[1D_(dim; )*o P(Jy) - P(Jy)x;j, (exp Jy g, expJp---exp Iy g )-

g jO’
For other groups one gets a similar expression. Here the remaining integrals are over
the group elements g, that correspond to the edges e of the dual complex (edges that
connect centers of 4-simplices). The second product is taken over the dual faces o3 j,

is the spin labelling the dual face o, k, is the Euler characteristics of 0. It is equal to
unity in case the dual face has the topology of a disc. In what follows we will always
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assume that this is the case. The order of the group elements in the argument of Xj, is
clear from the Figure 4.

Fig. 5.3. The product of the group elements is the holonomy around the dual face
o with the insertions of the group elements expJ at each center of the corresponding
d-simplex.

The expression (5.22) for the generating functional can be further simplified by
integrating over the group elements g.. However, the result of this integration is different
in different dimensions, and we will perform it separately for each particular case.

Before we calculate the generating functional for each particular spacetime dimen-
sion, let us pause to discuss some general properties of the expression for Z(J, A). The
generating functional has several symmetries which we describe as follows. First, the
generating functional is invariant under gauge transformations. Namely, let us consider
a transformation J,, — Ih(w) Jwg}:(%u), where h(w) denotes the d-simplex of A to which
w belongs. Here Ih(w) is the same for all w belonging to the simplex h. The generating
functional (5.11) satisfies:

Z(gJg~ 1, A) = Z(J,A). (5.23)

This “discrete” gauge transformation is parametrized by one group element for each d-
simplex of A. However the expression (5.22) for the generating functional has a bigger
invariance. Namely, let us denote by e, (w),e_(w) the two edges of the wedge w which
meet at the center of the d-simplex h(w). Let us associate with each edge e (w) a group

element Je . (w) 5O that it is one and the same for different wedges w when e (w) is one

and the same. The transformation of all currents according to J,, — Ie , (w) Jwge_l(w)

leaves the generating functional invariant. This transformation, which is parametrized
by d + 1 group element per simplex, contains the gauge transformation as its particular
case. The later corresponds to g, (w) = 9e_(w) = Ih(w) for all w that belong to h. The
appearance and significance of the described extra symmetry is not yet clear to us.
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The generating functional is covariant under the diffeomorphism group. Let f
denote a diffeomorphism of the underlying manifold M, and denote by f(A) the image
of the embedded triangulation A under the diffeomorphism. If J,, = [, J, let us denote

f*JE ff(w) J = fw f*J Then
Z(J, (D) = Z(f* T, A). (5.24)

The generating functional is generally not invariant under a refinement of the triangula-
tion A unless the theory is a topological field theory (unless J = 0).

To define the generating functional we had to choose an arbitrary orientation of
the wedges. However, the generating functional is independent of the orientation chosen.
If one, for example, reverses the orientation of the wedge w this results: (i) in the change
Jw = [, J into —J,,; (ii) it changes the holonomy of the connection along the wedge into
its inverse. The two effects cancel each other leaving the generating functional invariant.

5.2 2 dimensions

The case of two spacetime dimensions is somewhat special in the sense that dual
faces (2-cells) cover the manifold (see Fig. 5). The general construction of the previous

Fig. 5.4. Part of a triangulation of 2-dimensional spacetime manifold, with one face of
the dual complex shown. Bold lines indicate a wedge of the dual face.

subsection prescribes to replace the continuous field E, which in the case of two dimen-
sions is a zero form, by a distributional field concentrated along dual faces. However,
since the spacetime is two-dimensional, the dual faces cover the manifold, and we just



35

have to replace the F field by a field constant on each wedge, and equal to the Lie algebra
element X,,,.

Let us now see that it is quite a reasonable thing to do from the point of view of
the canonical quantum theory. In the case M is compact, which is the case of interest for
us here, a spatial slice ¥ of M consists of a finite number of circles S 1 The states of the
canonical theory are just class functions of the holonomies of A, which is the pullback
of A on %, around this circles. The corresponding field E, which in the quantum theory
becomes the operator of variational derivative with respect to A, has thus a constant
norm along each disjoint component of ¥.. It thus makes sense to replace the E field by
a collection of Lie algebra elements X, constant on each wedge. Moreover, as we shall
see, the integration over group elements g, in (5.22) renders all X, to have the same
norm in each disjoint component of M, which is in agreement with what we get in the
canonical approach.

The group elements g, in (5.22) are “shared” by two dual faces. Thus, all inte-
grals over g, in (5.22) have as the integrand the product of two matrix elements of g,.
These can be taken using the formula (D.3) of the Appendix. To describe the result of
this integration we will assume that M has a single connected component. Then the
generating functional in two dimensions, in the case the gauge group is SU(2), is given
by the following expression

(3

Zy(J,A) = Y (dimj)" P [ P(J1) P(Jg) P(J3) (%) (5.25)

J f
In the integration over the group elements g, in (5.22) survive only the terms in which
all spins j, are equal. This spin is denoted by j in (5.25). The symbols V, E stand in
(5.25) for number of vertices and number of edges in the triangulation correspondingly.

The product here is taken over all centers of faces of A, or, equivalently, over faces f.
The graphical notation stands for

(3

e = X;j (exp Jy exp Jg exp J3), (5.26)

where Jq, Jy, Jg are the three Lie algebra elements (currents) “shared” by the face f.
Recall that in two dimensions each face is just a union of three wedges, and Jy, Jo, J3 are
the currents J,, corresponding to these wedges (see Fig. 6). The expression (5.25) is the
final result for the generating functional in two dimensions, for the case of G = SU(2).
Generalization to other groups is straightforward.

Note that the graph in this graphical representation of the character can be ob-
tained as a result of the following simple construction. Let us draw a circle S1 centered
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Fig. 5.5. In two dimensions each face is a union of three wedges, and Jy, Jg, J3 are the
currents J,,, corresponding to these wedges.

at the center of the face (see Fig. 6). The intersection of wedges with the circle gives
the circle itself. The intersection of this circle with the dual edges gives three points on
the circle. Each wedge is labelled by a spin j, which is the same for all wedges, and
we can assign a label j to the circle that intersects the three wedges. Then the face
contribution to (5.25), that is, the contribution that we graphically represent by (5.2), is
simply the spin network constructed with the labelled circle, with insertion of the three
group elements (exp Jj exp Jy exp J3) at the points where the circle is intersected by the
corresponding wedges. This construction is trivial in two dimensions, but turns out to
be generalizable to any dimension.

As the zeroth order check to our construction, let us see what the generating
functional gives for J = 0. The transition amplitude given by (5.25), evaluated at J = 0,
gives

> (dim XM, (5.27)
J
where x(M) is the Euler characteristics of M. One can recognize in this expression the
volume of the space of flat connections on M modulo gauge transformations expressed
in term of Riemann zeta function (see, for example, [16]). Thus, in two dimensions our
calculation of the generating functional evaluated at J = 0 gives the expected partition
function of BF theory.

5.3 3 dimensions

The three-dimensional case is more interesting. Here the dual faces no longer
cover the spacetime manifold, and the FE field acquires a true distributional character.
The general construction prescribes to replace the E field, which is now a one-form,
by a distribution concentrated along dual faces and constant along the wedges. It is
illustrative to give a coordinate expression for such a distributional field. Let us consider
an arbitrary wedge w (see Fig. 7). Let u = 0 be the equation of a plane containing w.
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Fig. 5.6. Tetrahedron from a triangulation of a 3-dimensional spacetime manifold. The
figure also shows the wedges that lie inside this tetrahedron.

Then the field E that has the correct distributional character is given by the expression
dud(u) X, . (5.28)

To calculate the generating functional let us note that each edge of the dual
triangulation belongs to three dual faces. Thus, in (5.22), one has to take integrals
over products of three matrix elements. The corresponding formula is given in the
Appendix D. The result of this integration can be described as a generalization of the
“circle” construction given at the end of the previous subsection. Let us draw a sphere
S? centered at the center of each tetrahedron. The wedges belonging to a particular
tetrahedron intersect the sphere and draw a graph on its surface. We will refer to
this graph as I';, where ¢ refers to a tetrahedron of the triangulation that was used to
construct I';. It is not hard to see that I'; is a tetrahedron whose vertices come from
the intersection of the sphere with the dual edges. The same graph I'; can also be
obtained by looking at the boundary of tetrahedron ¢ (this boundary has the topology
of 52), which is triangulated by the faces of £, and constructing the graph dual to the
triangulation of this S 2. The resulting tetrahedron is the same as that in the previous
construction with a sphere.

In (5.22) the sum is taken over spins j, labelling the dual faces. The result of
the integration over the group elements g, will still be a sum over spins j,. Each wedge
belongs to some dual face, and, thus, is labelled by spin. As we have just seen the edges
of I'; are in one-to-one correspondence with the wedges. Let us label these edges with
the same spins as those of the corresponding wedges. We have a current J,,, associated
with each of the 6 wedges belonging to tetrahedron ¢. Let us denote this currents by
J1,...,Jg- We can now construct a function of the group elements exp Jy,...,exp Jg
that is just a spin network function.



38

The generating functional in three dimensions, for the case of SU(2), is then given
by the following expression

Z3(J,A) =>" dim; I P)- P(Jg) @@ (5.29)
o t
@
where the sum is over all possible coloring of dual faces. This is the final expression we
are going to use in the following section in order to derive spin foam models.
As the zeroth order check, it is instructive to find the value of the generating

functional for J = 0. It is easy to see that this gives exactly Ponzano-Regge model, as
expected.

Jo

5.4 4 dimensions

The case of four dimensions is analogous to the just analyzed case of three dimen-
sions. The only difference is that it is harder to visualize a four-dimensional triangulated
manifold, and that the final expression for the generating functional is more complicated.
However, the final result for the generating functional follows the same pattern.

First, let us give a coordinate expression for the distributional field £ in four
dimensions. Let u,v be two functions such that v = 0, = 0 is the equation for a 2-
surface in M containing one of the faces o of the dual complex, and du A dv is positive
as defined by the orientation of . We then define E to be equal to

du A dv d(u)d(v) X, (5.30)

on each wedge w, and to be equal to zero everywhere else. We repeat this construction
for all wedges, and add all these distributional forms together to get a two-form that is
concentrated along the faces of the dual complex. Then the integral of such distributional
E over a wedge of the triangulation is equal simply to X, corresponding to that wedge.

Let us now describe the result of integration over the group elements g, in (5.22).
In four dimensions each dual edge is shared by four dual faces. Thus, one has to take
the integral of the product of four matrix elements. The required formula is given in
Appendix D. The result of this integration can again be described using a certain spin
network function of the group elements corresponding to the currents J,,. As in the case
of two and three dimensions, let us introduce special graphs in the vicinity of the center
of each 4-simplex h, which we will call I'},. We define graph I';, as the intersection of the
sphere s3 surrounding the center of 4-simplex h with the dual faces 0. The graph I'y,

lives in 53, but it can be projected on a plane. This gives us the pentagon graph. Note
that at this stage we do not care about types of crossings we get (that is, whether this is
under- or over-crossing). The edges of this graph are in one-to-one correspondence with
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the wedges w belonging to the 4-simplex h. Thus, we can associate to each edge a current
Jy, and label it with the spin j, labelling the dual face to which the corresponding wedge
belongs. Additionally, let us label each of five vertices of the pentagon by a half-integer
(spin). Vertices of the pentagon are in one-to-one correspondence with tetrahedra of the
triangulation. Thus, we shall use the notation j; for this spins.

Inside each four-simplex there are 10 wedges. Let us denote the corresponding
currents by Ji,...,J1p- One can then construct the function of the group elements
exp Jq,...,exp Jig-

Thus, for the case of G = SU(2), the generating functional Z is given by the sum
over spins of products over 4-simplices of the above functions of the currents J,

Zy(,0) = > ] dim;_ II dim;, I Pw) - P(Jyp)
t h

jo' 7jt g

1

Here h labels 4-simplices of the triangulation and j, are spins labelling the dual faces.
The resolution of each vertex in this pentagon graph is given in the Appendix D.

The value of the generating functional at J = 0 gives the Ooguri amplitude, as
expected.

5.5 Higher dimensions

In higher dimensions, the result for the generating functional follows the same
pattern. Since the general formula is very cumbersome, let us describe the result in
words. The central element of the result for the generating functional is the spin network
function evaluated on group elements corresponding to the currents. This spin network
in any dimension can be obtained as the graph on the boundary of the simplex, and dual
to the triangulation of the boundary. Equivalently, it can be obtained by considering
the intersection of the sphere sD _1, drawn inside the D-simplex, with the dual faces.
The intersection of the dual faces with this sphere draws on the sphere the graph, which,
together with the labels inherited from the dual faces, gives the spin network of interest.
Every current comes with the function P(J) multiplying the expression for the generating
functional. There are other factors similar to the ones in the cases described above. It
is easy to determine this factors in each particular dimension by performing the integral
over the group of the product of a collection of characters. We will not develop this
further here.

For J = 0 the generating functional described gives a model that can be checked
to be triangulation independent. Thus, we obtain higher-dimensional generalizations of
Ponzano-Regge and Ooguri models.
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Chapter 6
BF theory with an interaction term. Examples

Having calculated the generating functional in various spacetime dimensions we
are in the position to use our results to study concrete theories. However, let us first
describe in more details the theories that can be treated within our approach, and give
physically interesting examples. In this paper we will restrict our attention to a special
class of theories. In most cases we for simplicity fix the gauge group to be G = SU(2).
The only case where we consider a different gauge group is gravity in D dimensions,
where the group is SO(D). Let M be an oriented smooth D-dimensional manifold, and
let P be an SU(2)-bundle over M. The basic fields of a theory of interest are a connection
A on P, and an AdP-valued (D-2)-form, often called B, which we call E because of its
relation with the SU(2) “electric” field of the canonical formulation of the theory. The
action of the theory is of the form

S[A, E] = /M [Tr (EAF) +8(E)], (6.1)

where F' is the curvature of A, “Ir’ is the trace in the fundamental representation of
SU(2), and ® is a gauge invariant polynomial function that depends on E but not on
its derivatives. Also, ®(E) should be a D-form so that it can be integrated. It can also
depend on other dynamical fields, for example Lagrange multipliers as in the case of
gravity, or on additional non-dynamical fields (background structure), as in the case of
Yang-Mills theories. Let us now give examples of theories belonging to this class.

6.1 2D Yang-Mills

Yang-Mills action can be written only if one introduces a background metric on
M. However, in two spacetime dimensions, Yang-Mills action turns out to depend only
on a measure (area two-form) defined by the metric on M. Thus, we will keep track
only of this dependence of the action on a measure dy on M. Yang-Mills theory in 2D
is described by the following BF-like action

e 9
/M EF) + 5 /M duTe(E?). (6.2)

Here F is a Lie-algebra valued zero-form, F' is the curvature of the connection A. Solving
equations of motion for E that follow from this action, and substituting the solution into
the action, one can check that the action reduces to the standard Yang-Mills action

1 2 bd
SvyM = —@ ™ d :v\/ggacg Tr(FypFeq), (6.3)
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where g, is a metric (of Euclidean signature) on M such that d2x\/§ = dpu, where /g
is the square root of the determinant of the metric.

Using the techniques developed in this paper, one can calculate the vacuum-
vacuum transition amplitude of this theory, that is the path integral of exp (i x action).
However, an interesting feature of this theory is that the same techniques can be used
to calculate the partition function, that is, the path integral

/ DADE exp (—Syyg) - (6.4)

The problem of calculation of the partition function can be reduced to the problem of
calculation of the vacuum-vacuum transition amplitude of a somewhat different theory,
that is of the path integral of exp (i x action), with the action given by

. 62 2
/M (EF) - i % /M duTe(E2). (6.5)

Indeed, integrating over FE in the path integral of exp (i x action), one gets (6.4). As one
can see, the two actions (6.2),(6.5) differ by the factor of 7 in front of the second term.
Using the two actions (6.2),(6.5) one can calculate both the vacuum-vacuum transition
amplitude and partition function of the theory.

6.2 3D BF theory with the ‘cosmological term’

In three dimensions the E field of BF theory is a one-form, and one can add a
term cubic in E to the BF action to obtain

A
—/ Tr(E/\F—I——E/\E/\E), (6.6)
M 12

where M is assumed to be a three-dimensional orientable manifold. The action is a
functional of an SU(2) connection A, whose curvature form is denoted by F, and a 1-
form E, which takes values in the Lie algebra of SU(2). Thus, the action (6.6) is that of
BF theory in 3d, with E field playing the role of B, and with an additional “cosmological
term” added to the usual BF action. This theory is related to gravity in 3D as follows.
Having the one-form E, one can construct from it a real metric of Euclidean signature

1
gap = 5 TH(EaFy). (6.7)

Here a,b stand for spacetime indices: a,b,... = 1,2,3. We take the E field to be anti-
hermitian, which explains the minus sign in (6.7). Thus, the E field in (6.6) has the
interpretation of the triad field. One of the equations of motion that follows from (6.6)
states that A is the spin connection compatible with the triad E. Taking the F field to
be non-degenerate and “right-handed”, i.e., giving a positive-definite volume form

1
SE T (By By ), (6.8)
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and substituting into (6.6) the spin connection instead of A, one gets the Euclidean
Einstein-Hilbert action

% /M &2/ (R - 2A). (6.9)

We use units in which 87G = 1. The minus in front of (6.6) is needed to yield precisely
the Einstein-Hilbert action after the elimination of A. Thus, A in (6.6) is the cosmological
constant. An important difference of this theory and Einstein’s theory is the fact BF
theory, unlike gravity, is defined for degenerate metrics.

6.3 4D BF theory with the ‘cosmological term’

In four spacetime dimensions the FE field of BF theory is a two-form. Thus, one
can construct the following action functional

/M T(E A F) — %’I‘r(E AE), (6.10)

where A is a real parameter, which we will refer to as “cosmological constant”. If one, as
in the following subsection, adds to this action an additional constraint that F is simple,
that is, given by a product of two one-forms, then this theory is equivalent to Einstein’s
theory and A is proportional to the “physical” cosmological constant.

6.4 4D Euclidean self-dual gravity

The action for Euclidean general relativity in the self-dual first order formalism
is given by [46, 37, 19]

/M Te(E A F) — (EZ NE) — %5”Ek /\Ek), (6.11)

where, to write Ei, we have introduced a basis in the Lie algebra of SU(2). Here zpij is
a symmetric matrix of Lagrange multipliers. The variation of the action with respect to
1 yields equations

E'ANE) =Y S NEy. (6.12)

In the case FE is non degenerate, i.e., the right hand side of (6.12) is non zero, these
equations are satisfied if and only if E is the self-dual part of a decomposable 2-form,
i.e., if and only if there exists a tetrad field eI, I=0,1,2,3 such that E* = :I:(e0 A€l +
%%‘j gel A ek ). In this case the action reduces to the self-dual Hilbert-Palatini action
for 4-dimensional gravity and 1);; correspond to the components of the self-dual part of
the Weyl curvature tensor. Thus, (6.11) is the BF action in four dimensions, with an
additional “simplicity” constraint added to it.
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6.5 Higher-dimensional gravity

It turns out that higher-dimensional gravity can also be written in the form of
BF theory plus constraints. In other words, one can re-write the action in the following
form:

/M Te(E A F) + %Tr(E/\(I)(E)). (6.13)

The action is a functional of a connection A, and F' is its curvature, of a (D-2)-form E,
and of a collection of Lagrange multipliers ® described below. Varying with respect to
the Lagrange multiplier field, one gets equations guaranteeing that £ comes from the
metric. This generalizes what we have seen in the previous section in the case of self-dual
gravity.

The existance of such a formulation is not obvious, for no generalization of the
action of the previous section is possible to higher dimensions, where there is no analog
of self-duality for the connection. Still, it turns out that one can write down the gravity
action in the BF form in any dimension, but one has to work with the full internal group.
The results of this section were discovered by Freidel and De Pietri [23] for the case of
4d, and by Freidel, Krasnov and Puzio for higher dimensions. The BF formulation exists
both for Lorentzian and Euclidean signatures of the metric. Here we consider the case
of Euclidean signature, which is what will be used in the quantum theory. Thus, the
gauge group in this section is SO(D).

The action for gravity in the BF formulation is a functional of the E field, the
connection form A, and Lagrange multipliers ®. There are two equivalent formulations,
which are both worth mentioning. In the first formulation, which is more customary in
the context of BF theories, the E field is thought of as a Lie algebra valued (D — 2)-
form. In the second formulation one uses the metric-independent Levi-Civita density to
construct from this (D — 2)-form a densitized rank two antisymmetric covariant tensor,
which we will call a bivector. We first present the action in this second formulation,
for it looks exactly the same in any dimension D > 4. Thus, we start by writing F
as a bivector E’ij, where Greek characters are the spacetime indices, latin letters are
the internal indices, and a single tilde over the symbol of E represents the fact that its
density weight is one.

The action of the theory is then given by:

= _ D mpv ij l ikl mpv mpo
S[A, B, ®) = / aPu B FT + aM B . (6.14)

The action is a functional of an SO(D) gauge field A'Zj, bivector fields Eé‘jy, and Lagrange

multiplier fields %ijflo. This action is generally covariant: the bivector fields scale as
tensor densities of weight one, while the multipliers scale as densities of weight minus
one, which is represented by a single tilde below the symbol ‘®’.

The multiplier field %ifzﬂa must be such that it is completely anti-symmetric
in one set of indices, and its anti-symmetrization on the other set of indices vanishes.
There is a freedom, however, on which set of indices the anti-symmetrization is taken
to vanish. It turns out to be more convenient for the quantum theory to choose the
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anti-symmetrization on the spacetime indices to vanish. This is the choice we make.
Let us emphasize, however, that from the point of view of the classical theory the two
possibilities are completely equivalent in the sense that they are both enough to guarantee
the simplicity of the E field (for a generic field E).

The postulated properties of the Lagrange multiplier field ® imply that it is of
the form:

ijkl _ [m]ijkl
Rjwpo = € Llm)uvpo
where elMiFL g the totally anti-symmetric form on the Lie algebra, [m] is a completely

anti-symmetric cumulative index of length D — 4, and g[m] is a new Lagrange

uvpo
multiplier field, which we, by abuse of notation, also call . This new Lagrange multiplier

field also has density weight minus one. The field Q[m] wpo has a property that its anti-
symmetrization on the spacetime indices vanishes:

Lpmljpo) =0 (6-15)
Using this new set of Lagrange multipliers the action can be written as:
_ o %J [m]ijkl puv papo
S[A,B,®] = /d x Ezg F %[m]/u/pae Eij B (6.16)

Let us now give another way the action (6.16) can be written, using the repre-
sentation of the E field as a (D — 2)-form. This is more standard in the context of BF
theories. Using the definition of the bivector E#Y,

~ 1
uy ~,UV51---ﬂD_2 ..
B = 5o —an¢ Eg, Bp_yijs (6.17)
one can easily check that the action (6.16) can be rewritten as
_ ij B1--Bp—gpv
SIAB,9] = 55—y /d xEﬁl B 2iiFIbE +
Eﬁl Bp_ w@” (B)&P1--PD—2mv (6.18)

where we have introduced a new two-form field ®(F) with values in the Lie algebra. In
the index notation it is given by:

o' (E) = piIH!

o /e (6.19)

Therefore, in the abstract notations, one can write the action as in (6.13). Thus, there

are two equivalent formulations of the theory. One can use the formulation in terms of

forms, given by (6.13), or the formulation in terms of bivectors, given by (6.14).
Variation of the action (6.16) with respect to ® gives the following equations:

[Amlijkl EZI/ Ellc)la _ dalpvpo 5{2]] (6.20)
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[m]

for some coefficients ¢; .. Here [m], [@] are cumulative anti-symmetric indices of length

D — 4, Lie algebra and spacetime ones correspondingly. As one can see, when equations

(6.20) are satisfied, the coefficients 5%23] are given by:

[m] 1 [m]zyklE;u/E

o] = (D—4)4! ki Sapvpo- (6.21)

It is clear that when E comes from a frame field e, E identically satisfies (6.20).
The following theorem states that the reverse is true.

THEOREM 6.1. (Freidel, Puzio and Krasnov) In dimension D > 4 a generic (non-
degenerate) E field satisfies the constraints (6.20) if and only if it comes from a frame
field. In other words, a non-degenerate E satisfies the constraints (6.20) if and only if
there exist e'f such that:

BlY = i|e|e£“ej’f], (6.22)

where |e| is the absolute value of the determinant of the matriz eé‘.
The condition D > 4 is there because in four dimensions, under the same assumptions,
there is another solution (see [23]) given by:

=Y kl |\n v

EZ = Hele;; eL el] (6.23)
Thus, our theorem implies that this other solution appears only in four dimensions. The
proof of this statement is given in [31].

For later purposes, let us note that the constraints (6.20) can be subdivided into
the following categories:

simplicity: Ef“’E]’:l'i 0  p,vdistinct (6.24)
intersection: EFVE’Zﬁ =0 w, v, pdistinct (6.25)
normalization: Ewakl] = E[’”:J Ekl] 1, v, p, o distinct (6.26)

The reason for this terminology has to do with the conditions imposed by the various
constraints. Thus, constraints of the first type guarantee that E#jy is a simple two-form

in the Lie algebra. Thus, they guarantee that E defines a plane in RP. The geometrical
meaning of the intersection constraints is that they guarantee that the two planes defined
by two simple E intersect along a line. The normalization constraint guarantees that the
frame vectors defined by different E are normalized in the same way. For more details
on this see [31].
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Chapter 7
Known state sum models

In this chapter we present state sum models for the theories we just described.
This section is mostly a review of known facts. Some of this models were already dis-
cussed before. Here we give more details, and also derive some facts that will be needed
later, when we compare our results with the known models described here.

7.1 Migdal-Witten model

Migdal [42] has studied the Yang-Mills theory on a lattice, and, in particular,
has proposed a lattice model for the Yang-Mills theory in two dimensions. This model
was later studied by Witten [62] in the connection with topological field theories in two
dimensions.

As we discussed above, the problem of calculation of the Yang-Mills partition
function can be reduced to the problem of calculation of the path integral

YM, 2 B . e? 2
Z2M(pe?, M) = / DADE exp (Z /M TH(EF) + 5 /M duTe(E )), (7.1)

where p is the total area of M, and other notations are explained in subsection (6.1).
Migdal [42] has proposed the following lattice version of this path integral. For simplicity,
we will formulate Migdal model on a triangulated manifold. Let us triangulate our two-
dimensional manifold M, and introduce the dual triangulation (see Fig. 5). Let us label
the edges € of the dual complex by group elements g., and the dual faces o by irreducible
representations of SU(2), i.e., spins j,. The “discrete” version of (7.1) is then given by
(see [62]):

YM(pe”, M) =T [ dge 3" T dimg, xj, (e, -+ 9e,) x0 (~€poclin)2) ;- (72)
€ jo_ ag

where the multiple integral is performed over all group elements g, and dg is the normal-
ized Haar measure on SU(2), p, is the area of the dual face o, as defined by the measure
dp, c(j) is the value of the quadratic Casimir operator in the representation j

(i) =250 +1), (7.3)
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and g, 1 e, is the product of group elements around the dual face. After integration
over the group elements g, the partition function takes the following simple form:

Z(dimj)“(M)e‘e2f’c(j), (7.4)
J

where k(M) is the Euler characteristics of M. Thus, as we indicated in the argument
of YM, the partition function depends only on the topological properties of M. Also,
the dependence on measure du enters only through the dependence on the total area p

of M.

7.2 Turaev-Viro model

The Turaev-Viro model gives a way to calculate the transition amplitude of the
theory defined by (6.6), i.e., the path integral

ZBF (A, M) = /DEDA exp (—i/M Tr (E/\ Fi %E/\E/\E)). (7.5)
In this paper we consider only vacuum-vacuum amplitudes. Although the Turaev-Viro
model can be used to calculate more general amplitudes between non-trivial initial and
final states, we will not use this aspect of the model here. We consider the version of
the model formulated on a triangulated manifold. Thus, let us fix a triangulation A
of M. Let us label the edges, for which we will employ the notation e, by irreducible

representations of the quantum group (SU(2)),, where ¢ is a root of unity

g=ek =, (7.6)

The parameter h above is the parameter of deformation quantization, and this explains
why the usual notation of the Planck constant is used. The irreducible representations
of (SU(2)), are labelled by half-integers (spins) j satisfying j < (k —2)/2. Thus, we
associate a spin j, to each edge e. The vacuum-vacuum transition amplitude of the
theory is then given by the following expression (see, for example, [54]):

TV(g,A) = 72" 3" [ dimg (i) [1(61)q (7.7)
Je € t

where 1 and the so-called quantum dimension dimq (7) are defined in the Appendix A by
(A.4) and (A.5) correspondingly, and V' is the number of vertices in A. The last product
in (7.7) is taken over tetrahedra ¢ of A, and (6j), is the (normalized) quantum (6;)-
symbol constructed from the 6 spins labelling the edges of ¢ (see Appendix C). It turns
out that (7.7) is independent of the triangulation A and gives a topological invariant of
M: TV(q,A) =TV(g, M).

The construction that interprets the Turaev-Viro invariant (7.7) as the vacuum-
vacuum transition amplitude of the theory defined by (6.6) is as follows. It has been
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proved (see e.g. [54]) that (7.7) is equal to the squared absolute value of the Chern-
Simons amplitude

TV(g, M) = |CS(k, M)|?, (7.8)

with the level of Chern-Simons theory being equal to & from (7.6). It is known, however,
that the action (6.6) can be written as a difference of two copies of Chern-Simons action

k 2
A= Tr(ANdA+ZANANA). .
Ses(A) 47T/M ( NdA+ZANAN ) (7.9)
Indeed, note that
X A2
S(A-l—)\E)—S(A—)\E):—/MTr EAF+5EAEAE), (7.10)
™

where ) is a real parameter. Thus, (7.10) is equal to (6.6) if

27
A=—VA/2, k=——, or  h=+vVA. 7.11
/ T (7.11)
This relates the deformation parameter g of the Turaev-Viro model with the cosmological
constant A, and proves that the Turaev-Viro amplitude is proportional to the vacuum-
vacuum transition amplitude of the theory defined by (6.6)

TV(q, M)  Zg" (A, M). (7.12)

To compare in Chapter 8 the spin foam model obtained via our techniques with
the Turaev-Viro model, we will need the first-order term in the decomposition of (7.7)
in the power series in A. This is proportional to the expectation value of the spacetime
volume in BF theory at A = 0. Indeed, the expectation value of the volume is given
simply by the derivative of the path integral with respect to (—iA) evaluated at A = 0:

DEDAVol(M)S [0 ZBF(A)
(Vol) = — | —3 (7.13)
T T pEDASS oA ’ '
A=0
VM) = [ Leberyp, ByE,).

M 12

Thus, the expectation value of the volume of M in BF theory is proportional to the first
order term in A in the decomposition of (7.7).

Let us find this expectation value. An important subtlety arises here. It is not
hard to show that (7.7) has the following asymptotic expansion in #

AN 2
(E) PR(A) (1-A%(Vol)), (7.14)

where PR is the amplitude of the Ponzano-Regge model (1.7) V is the number of vertices
in A, and #(Vol) is a real quantity independent of . Thus, apparently there is no term
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proportional to A2 = A in this expansion. However, as it is explained, for example, in
[30], the state sum invariant (7.7) does not exactly give the transition amplitude of BF
theory. Instead, the Turaev-Viro amplitude is only proportional to the BF amplitude,
and the proportionality coefficient depends on &. This can be understood as follows. The
integration over (A + AE), (A — AE), which is carried out to obtain |CS(k, M)\2 in (7.8)
and thus the Turaev-Viro amplitude, is different from the integration over A, E one has
to perform to obtain (7.5). The difference in the integration measures is a power of h.
Thus, the amplitude (7.5) and the squared absolute value of the amplitude of the Chern-
Simons theory are proportional to each other with the coefficient of proportionality being
a power of fi. In the discretized version of the theory, given by the Turaev-Viro model,
this power of & is replaced by BV, Thus, the Turaev-Viro amplitude, in the limit of
small cosmological constant, differs from the BF amplitude by a power of w3V

This remark being made, we can write an expression for the expectation value of
the volume in BF theory:

) _ _3 TV(A,A) B
"Wolla = =51 (PR(A)(h3/47r)V>A:o B

ﬁZzVol (A,j) (H dim(j, H )) , (7.15)

Je

where the function Vol(A,j) of the triangulation A and the labels j = {j,} is given by

. . 0 n? 0 In(dim(j,))
iVol(A,j) = Z <_6_A (7(713/4”)))/\:0 + Z <_—8Aq )AZO +

aln((ej)q))
— e . (7.16)
> (-,

Here v stands for vertices of A, e stands for edges and ¢ stands for tetrahedra. We
intentionally wrote the expectation value of the volume in the form (7.15) to introduce
the volume Vol(A, j) of a labelled triangulation, which will be of interest to us in what
follows. Indeed, (7.15) has the form

Zje iVol(A, j)Amplitude(A, j)
¥, Amplitude(A, j) ’

(7.17)

where

Amplitude(A, j) Hdlm Je H (7.18)
t

is the amplitude of Ponzano-Regge model. This shows that Vol(A,j) indeed has the
interpretation of the volume of a labelled triangulation. Note that the volume turns
out to be purely imaginary. This has to do with the fact that in (7.5) one sums over
configurations of E of both positive and negative volume. A more detailed explanation
of this is given in [30].
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The volume (7.16) has three types of contributions: (i) from vertices; (ii) from
edges; (iii) from tetrahedra. It is not hard to calculate the first two types of them. One
finds that each vertex contributes exactly 1/12, and each edge contributes j,(j, +1)/6,
where j, is the spin that labels the edge e. It is much more complicated to find the
tetrahedron contribution to the volume, that is, the derivative of In((65),) with respect
to A. The result is described in [30]. Using the notations of the Appendix E, the final
result for the expectation value of the spacetime volume in BF theory can be written as
follows:

iVol(A,j) =Y 1, > Jele 1) + (7.19)

1

11 | 1 i
Swalu T )i (1 )] e
e#e'#£e” s ! 0

e’ e

Here <] stands for the normalized classical (63)-symbol.

It is interesting to note that not only tetrahedra ¢ of A contribute to the volume,
but also the edges e and vertices v. The contribution from the vertices is somewhat
trivial — it is constant for each vertex. Nevertheless, when thinking about the triangu-
lated manifold M one is forced to assign the spacetime volume to every vertex. The
contribution from edges depends on the spins labelling the edges. Again, this implies
that each edge of the triangulation A carries an intrinsic volume that depends on its
spin. The contribution from tetrahedra is more complicated. It is given by a function
that depends on the spins labelling the edges of each tetrahedron. It is interesting that
this picture of the spacetime volume being split into contributions from vertices, edges
and tetrahedra can be understood in terms of Heegard splitting of M. Recall that Hee-
gard splitting of a three-dimensional manifold M decomposes M into three dimensional
manifolds with boundaries. Then the original manifold can be obtained by gluing these
manifolds along the boundaries. For the case of a triangulated manifold M, as we have
now, the Heegard splitting proceeds as follows. First, one constructs balls centered at
the vertices of A. Then one connects these balls with cylinders, whose axes of cylindrical
symmetry coincide with the edges of A. Removing from M the obtained balls and cylin-
ders, one obtains a three-dimensional manifold with a complicated boundary. One has
to further cut this manifold along the faces of A. One obtains three types of “building
blocks” that are needed to reconstruct the original manifold: (i) balls; (ii) cylinders; (iii)
spheres with four discs removed. Each of this manifolds carries a part of the original
volume of M. Our result (7.19) provides one with exactly the same picture: the volume
of M is concentrated in vertices (balls of the Heegard splitting), edges (cylinders), and
tetrahedra (4-holed spheres).

7.3 Crane-Yetter model

Crane, Kauffman and Yetter [22] studied a state sum model that is very similar
to the Ooguri model [44], however, instead of the gauge group SU(2) the quantum group
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(SU(2))q is used. The state sum invariant they proposed is given by (see, for example,
[54]):
CY(q,A) = 5~ 2V 2B 3™ S™ ] dimg (i) T] dimg (G) [T (159), (7.21)
ig g f t h

Here dim(j) is the quantum dimension (A.5), 7 is defined by (A.4), (155), stands
for a (normalized) quantum (15j)-symbol (see the Appendix D) associate with any 4-
simplex. This quantum (15j)-symbol is the Reshetikhin-Turaev evaluation of the graph
I';, described in subsection (5.4). The symbols V' and E stand for the number of vertices
and edges in A correspondingly. This state sum model is independent of a triangulation
of the 4-manifold used to compute (7.21). Thus, it gives an invariant associated with
the manifold M: CY(¢,A) = CY(g, M).

The quantity CY (g, M) is conjectured to give the transition amplitude for BF
theory with cosmological constant, the cosmological constant A being related to g by

g = expiA. (7.22)

Thus, unlike in the case of 3-dimensions, we have now A = A. This relation can be estab-
lished as follows. It has been shown (see e.g. [54]) that if M is a manifold with boundary
then CY (g, M) is proportional to the Chern-Simons transition amplitude CS(k, 0M) in-
troduced in the previous subsection:

CY (g, M) x CS(k,OM). (7.23)
The deformation parameter g of the Crane-Yetter model is related to the level of Chern-

Simons theory as in (7.6). Consider now the transition amplitude for BF theory with
cosmological term:

ZoF (A, M) = / DADE exp (z /M T(EAF) — %’I‘r(E A E)) . (7.24)

Let us integrate over the field E in this path integral. One gets

BF 1
ZPF (A, M) / DAexp (ﬁ /M Te(F A F)) . (7.25)
Now, using the fact that
2
Te(FAF)=d(ANdA+ gA NANA) (7.26)
we get .
725 (0 M) o [ Daexp (isCS(A, aM)) . (7.27)

This, together with (7.23), then implies that

CY(q, M) x Z," (A, M), (7.28)
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where ¢ is related to A as in (7.22).

To compare the spin foam model we obtain below with the Crane-Yetter model
we will need to know the first order term in the decomposition of ZEF(A,M) in the
power series in A. To find it, we have to take into account the fact that, similarly to
the case of 3D BF theory, the transition amplitude is only proportional to the Crane-
Yetter amplitude (7.21), with the proportionality coefficient being a function of . This
proportionality coefficient is given by a power of 4. As one can check, the “zeroth” order
term in £ of (7.21) is equal to

73 -V+E
(E) 0(A), (7.29)

where O(A) is the Ooguri state sum invariant (4.3). Thus, the first order term in A of
ZBF (A, M) is given by

0 _BF _ (9 ([ CY(g;M)
(8_1\24 (A’M))A:O - (31\ ((h3/47T)_V+E>>A:0. 720

However, unlike the case of 3D BF theory with cosmological term, in this case the
only contribution to this expression comes from the quantum (15j)-symbol. All other
“building blocks” that one encounters in (7.21) contain only the A° = A2 terms, and,
thus, do not contribute to (7.30). The first derivative of the quantum (15j)-symbol with
respect to i = A can be found by methods analogous to the ones used in the Appendix
E to calculate the derivative of (6j)-symbol. However, in the case of (15j)-symbol, the
calculation is much simpler due to the fact that only crossings contribute to the first
order in fi. The (15j)-symbol used in (7.21) contains only one crossing (see, for example,
[564]). Using the expression (E.2) for the R-matrix as a formal power series in h given
in the Appendix E, one can easily check that the first A-order term of the quantum

(15j)-symbol is given by:
h -
2N

where the dots stands for terms containing graspings between two edges sharing one
vertex and correspond to different possible choices of the framing of the 15j-symbol. We
will not keep track of these terms at this stage. Their relevance will be discussed below.
This is, however, not quite the expression we want because it is not symmetrical. We
will symmetrize it by putting the grasping at all pairs of lines of the graph in (7.31)
that do not share a vertex. However, if one does that, than the quantity one obtains
for each given 4-simplex h is not equal to (7.31). Ouly if one sums over all 4-simplices
of the triangulation one obtains the quantity that is equal to the sum of (7.31) over h.
This can be proved by using certain simple relations that hold for graspings. One such
relation is the analogs of “closure” relations (B.4). It graphical representation is given
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=0 (7.32)

Such “closure” relation holds for every vertex of the graph in (7.31). Another relation
that one has to use involves two different pentagon graphs. As one can convince oneself,
the vertices of the pentagon graph in (7.31) are in one-to-one correspondence with the
tetrahedra of A. Thus, every tetrahedron is shared exactly by two 4-simplices, and the
following relations holds:

w _w =0 (7.33)
AN

This allows one to cancel certain types of graspings from one 4-simplex with similar types
of graspings from the neighboring 4-simplex. Certain cancellations occur for each tetra-
hedron of the triangulation. These relations allow one to obtain the following symmetric
expression:

e

0 _BF ) _ige 1 : ! i
(AT M), =5 S | S ) N
e,e :

e 0

(7.34)
where the sum is taken over different pairs e,e/ of edges that do not share a vertex.
There are 30 terms in this sum, which explains the factor of 1/30 in (7.34). The quantity
sign(e, ') in (7.34) is plus or minus one depending on the orientation of the two edges
e,e’. A consistent choice of orientations comes from the geometrical 4-simplex discussed
in the Appendix B. With this choice, sign(e, ¢') = sign(f, f'), where we use the fact that
every edge of the pentagon graph in (7.34) is in one-to-one correspondence with a face
of the corresponding 4-simplex, and sign(f, f') is defined by the equation (B.5). The
dots in (7.34) correspond to some symmetric expression that contains only terms with
graspings between two edges sharing one vertex.

7.4 Reisenberger model

Reisenberger [50] has proposed a state sum model corresponding to the self-dual
Plebanski action (6.11). The main idea of his construction is to modify the SU(2) Ooguri
model in such a way that the constraints (6.12) are implemented. The model can be
described as follows. As in the previous subsection, let M be a triangulated 4-manifold.
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Let us associate a group element g,, to each wedge w of the dual triangulation (see
Section 5). One can think of g,, as the holonomy of connection around the boundary of
the wedge w with the basepoint being the center of the 4-simplex h to which the wedge
belongs. Let DZ} be a differential su(2) operator acting on functions of g,, as the sum of

left and right invariant vector fields. Let us denote by Q' the following operator acting
in (SU(2))®10.

Q7 =3 e(w,w )DZUDZU, — 55” Y e(w,w')Dy D1 (7.35)
w,w' ww'
where e(w,w') is the sign of the four volume span by the wedges w,w’ (e(w,w’) = 0 if
the two wedges don’t span a four-volume). We choose a coloring of the wedges by spins
Juw- denote by R; (g9) the representation of g as an endomorphism of Vi, and define for
each 4-simplex h the following function on (SU(2))®10:
1 --Lavq, ,
¢h,j(gw) = tr®w€thw \/ﬁe 2z ®w€thw (20 + 1)ij (9w) |- (7.36)
The state sum model proposed by Reisenberger is given by

lim 3 [ Lo T s000) (7.37)

rz—0%
Jw

The limit is a possible way of selecting only the states belonging to the kernel of Qi

7.5 Barrett-Crane model

Recently Barrett and Crane [12] proposed a model for four-dimensional quantum
gravity based on the quantization of a geometric four-simplex. Similar ideas were pursued
at the same time by Baez [9]. He independently found the solution of the so-called
simplicity constraints (see below), but did not arrive at a spin foam model until the
Barrett-Crane paper. The set of ideas behind the derivation of the Barrett-Crane model
was already explained in Chapter 2, where a similar construction was presented for
Ponzano-Regge model. Actually, the derivation of Ponzano-Regge model presented in
section 2.2 is a one-dimension-down analog of the construction of Baez, Barrett and
Crane.

The idea is to start from a geometric four-simplex, whose quantization will then
give an expression for the quantum amplitude that must be associated with the simplex.
Here we only give a sketch of the construction, for more details see [9, 12].

A geometric 4-simplex (see Fig. B, Appendix B), can be characterized by 4 vectors

eé . However, in 4d vectors are cannot be thought of as elements of the Lie algebra,

and, thus, cannot be quantized in any natural way. Therefore, we instead choose to
characterize the 4-simplex by the so-called bivectors El 27] = eg ]. Geometrically, the

bivectors are associated with the faces of the simplex, and carry information about the

J
€
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orientation of the plane containing the face in ]R4, and about the area of the face. The
problem is that not every bivector is of the form of the wedge product of two vectors, or,
in other words, not every bivector is simple. One can, however, impose constraints which
will allow only the simple bivectors. These are the so-called simplicity constraints. In
four dimensions the simplicity constraints can be written in a nice form using the duality
operation. Any bivector can be decomposed in its self-dual and anti-self-dual parts. Then
the condition guaranteeing that the bivector is simple, i.e., is representable as the wedge
product of two vectors, is simply that the norm of its self-dual part is equal to the norm
of its anti-self-dual part. Understood in this way, the simplicity constraints are very easy
to impose in the quantum theory, as we shall see below.

Thus, one can characterize a 4-simplex by 6 bivectors E(j; I;] . It turns out to be more
convenient, however, to introduce 4 more bivectors, corresponding to the other faces of
the 4-simplex. One then gets 10 bivectors, corresponding to all 10 faces of the simplex.
The bivectors are not linearly independent, but have to satisfy the so-called closure
relations (B.4). As we have said, the bivectors have to satisfy in addition the simplicity
constraints. It turns out, however, that there are even more constraints to impose if
one wants a collection of 10 bivectors to determine a geometric 4-simplex. The other
constraints are known as the intersection constraints. Each such constraint involves
two bivectors, and, in the case bivectors are simple, guarantees that the two planes
determined by them intersect along a line. In other words, this constraint guarantees
that from a collection of vectors determined by simple bivectors, one is common to both
bivectors. This constraint can be given the following nice form: one simply requires that
the sum of bivectors is simple. One can then show that 10 bivectors satisfying the closure
relations, the simplicity and intersection constraints determine a geometric 4-simplex.

To produce a quantum gravity model one then quantizes this collection of 10
bivectors by identifying them with Lie algebra elements of SO(4). It is very convenient
to use the fact that SO(4) is isomorphic to SU(2) x SU(2)/Zg. Then the irreducible rep-
resentations of SO(4) can be characterized by giving a pair of irreducible representations
of SU(2), that is, by a pair of spins, with the condition that the sum of these spins is an
integer. Thus, every face is associated the Hilbert space:

S viLeViE, (7.38)

where jj,jg are the spins determining the representations of the left and right SU(2),
and V7 is the space of the irreducible representation of SU(2) of the dimension 2j + 1.

The above Hilbert space gives a quantization of a bivector, for the bivector be-
comes an operator in this space. One can now ask what is the quantum analog of
the simplicity constraint, which each bivector has to satisfy. Recall that classically the
simplicity constraint can be formulated as the requirement that the norm of the self-
dual part of the bivector is equal to the norm of its anti-self-dual part. The norm of
self- anti-self-dual parts has a very precise analog in the quantum theory: it is just the
quadratic Casimir of the corresponding SU(2). Thus, the simplicity constraint has a
precise quantum analog:

jrL =JR- (7.39)
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Therefore, only such representations of SO(4) correspond to simple bivectors. Note that
this is a true representation of SO(4) for the sum jr, + jp is always an integer in this
case. Thus, it is easy to quantize simple bivectors, the corresponding Hilbert space is
given by: ' '
H= Z vievy. (7.40)
J

Having quantized the bivectors, or faces of the 4-simplex, one can ask what is the
Hilbert space associated to a particular tetrahedron of this 4-simplex. Let us consider
one of the 5 tetrahedra belonging to the 4-simplex. There are 4 faces making this
tetrahedron, and the sum of bivectors corresponding to these faces must add up to zero,
which expressed the closure constraint (B.4). In quantum theory this condition tells us
that the Hilbert space associated to a tetrahedron is made of invariant elements of H®4,
In other words, the Hilbert space of a tetrahedron is the space of all 4-valent intertwiners
of simple representations of SO(4).

Note, however, that we still did not impose the intersection constraints. This
constraint tell us that two faces that belong to a tetrahedron must intersect along a
line. As we discussed before, this constraint can be expressed as the condition that
the sum of the corresponding bivectors is a simple bivector. This condition can be
expressed as an equation on 4-valent intertwiners allowed. It turns out that, given 4
simple representations, there is a unique solution. It was first discovered by Barrett and
Crane [12] and then proved to be unique by Reisenberger [53]. Thus, finally, the Hilbert
space corresponding to a tetrahedron is made of the Barrett-Crane intertwiners.

Having found the Hilbert space of a tetrahedron, we now have to glue 5 such
Hilbert spaces to form the Hilbert space of a 4-simplex. There is a natural way to do this
given by the pentagon spin network, constructed from the Barrett-Crane intertwiners.
Thus, the Hilbert space of a 4-simplex is spanned by pentagon spin networks, with
all representations labelling the edges being simple, and all 4-valent intertwiners being
the Barrett-Crane intertwiners. Having specified 10 spins, this spin network gives one
a number, whose interpretation is that of the quantum amplitude of a 4-simplex with
areas of its 10 faces being specified.

Taking these simplex amplitudes, replacing with them the (155)-symbols of the
SO(4) Ooguri model, and summing only over simple representations of SO(4), one gets
Barrett-Crane model of 4d quantum gravity.
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Chapter 8
Applications of the generating functional technique

Having described some known state sum models, we are in the position to apply
our method to various theories to obtain their spin foam models. Thus, in this chapter
we use the generating functional computed in Chapter 5 to construct systematically state
sum models of the theories described in Chapter 6. We then compare the results of this
systematic approach with the known results described in Chapter 7.

8.1 2D Yang-Mills

Our general strategy is to calculate the ‘interaction’ term ®(E) of the action (6.1)
on the configuration of E that is distributional along the wedges of the dual complex

E=)_E,, (8.1)

express the result as a polynomial function ®(X) of the variables X, introduced in

the previous section, and then look for the vacuum-vacuum transition amplitude of the

theory as given by
(ei‘l’(‘i‘s/‘”) 21 A]) . (8.2)
J=0
In the case of 2d Yang-Mills theory, the ‘interaction’ term i® is given by (see

(7.1)) :
e 2
</ [ () (8.3)

Calculating this on the configuration of E given by (8.1), with each E,, being constant
along the wedge w, we get

2
€ 2 2 )
5 > o Tr(X)) =—€") :prZ’UXfU, (8.4)
w

w

where p,, is the area of the wedge w, as measured with respect to du, and we have
introduced the SO(3) indices (A.3). The partition function of the theory is then given

by
9 ) 1)
(exp (—e %pw (&'Jj;] 57;(]12)) ARS A]) JZO. (8.5)

To compare this with the partition function of the Migdal-Witten model, it is
more convenient to take the generating functional Z[J] in its general form (5.22). Then,
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using

d__ 6 ' ]
ea(fﬁ% 5“@;) 'P(J)R(j)(eJ)L]:O _ ali+1/2)? _ ale(i)/2+1/4) (8.6)

J

where R(j)(e‘]) is the group element e” taken in the j representation, and ¢(j) is the

quadratic casimir of this representation, we get for the partition function

weo

. 2 .
H/dgGZHdlijXja(gel ©" ge, ) €XP (Z —e“py(clis) /2 + 1/4)> . (87
€ jO’ g
This can be seen to be equal to

YM(pe2,M)e_62p/4 (8.8)

by noting that
> pw=ps and > p,=p.
ag

weo

Thus, our approach gives the correct expression (7.2) for the partition function of the
Yang-Mills theory, apart from the factor exp(—e2p/4). However, the later is what is
called a “standard renormalization” of the partition function. That is, the result for
the partition function of 2D Yang-Mills may depend on a regularization procedure that
was used to calculate it, the two different schemes giving results that may differ, in
particular, by factors of exp(—aezp), where « is some coefficient. See, for instance, [62]
for a more detailed discussion of the standard renormalizations. Thus, the partition
function obtained by our method differs from that of the Migdal-Witten model just by
a standard renormalization factor.

8.2 3D BF theory with cosmological term

As one can see from (6.6), the ‘interaction’ term ¢®(FE) for this theory is given by
(E) — "A/ Te(EAE A E) (8.9)
i =1y ) .

As in the case of Yang-Mills theory in two dimensions, one has to find a polynomial
function ®(X) of variables X, by evaluating (8.9) on the distributional field E given by
(5.2). Unfortunately, in the case of three dimensions the result is not well-defined as in
the case of 2D Yang-Mills theory. Indeed, the E field is concentrated along the wedges
(see Fig. 7), and non-trivial contributions to the integral (8.9) come from the points
where wedges intersect. Thus, the contributions to (8.9) come from the integrals

/M Tr(Ey A By A Byy), (8.10)

where w1, w9, wg are three wedges that intersect. The wedges can intersect at points, as,
for example, they do at the center of each tetrahedron, or they can have more general
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intersections, as, for example, an intersection of three wedges sharing a dual edge. Or,
instead, one can have in (8.10) w; = wyg. Whatever the type of an intersection is, the
result of (8.10) is ill-defined because of the distributional nature of E field. Here we show
how the ambiguity in (8.10) can be resolved for the simplest, and most important type
of intersections: intersections of three different wedges at the centers of tetrahedra. As
we shall see, for intersections of this type there is a simple way to resolve the ambiguity
in (8.10) using geometrical considerations. As we show, this type of intersection is
the most important one, for it is responsible for, in certain sense, the most intricate
contribution to the transition amplitude of the theory. Thus, in this section, we restrict
our consideration only to this special type of intersection, calculate the corresponding
interaction term ®(X), find the corresponding spin foam model, and compare it with the
Turaev-Viro model. In the first order in the decomposition of Turaev-Viro amplitude
in power of A, we will be able to identify a term analogous to the term we obtain in
our model and compare them. We will find a very delicate matching between the two,
including the numerical coefficients. The importance of other types of intersections, not
treated here, will be emphasized later.

Thus, the intersections we consider are the ones for which three different wedges
intersect at the center of a tetrahedron. Given a tetrahedron ¢, there are 20 (without
counting the permutations) different triples of wedges wq # wo # w3. Four of these
triples do not span a three-volume; thus, it is natural at first to take the integral (8.10)
for such triples to be zero. These are exactly the triples of wedges that share a line
— a part of the dual edge. Thus, there are only 16 different triples of wedges (without
counting the permutations) that contribute to (8.10) for a given tetrahedron. Recall now
that each E,, is given by (5.28). Thus, for any given triple of wedges wy # wy # w3,
the integral (8.10) is proportional to

IATY (X, Xopy Xug)s (8.11)

but the proportionality coefficients are not fixed, because of the indeterminacy in the
value of the integral

/(5(u1)5(u2)6(u3)du1 A dUQ A du3. (8.12)

Of course if the wedges were infinite planes without boundaries this integral is a well-
defined quantity: it is just the intersection number and as such should be +1 depending
on the orientations of the wedges. Because of the existence of boundary we expect this
integral to be a number smaller than 1. We fix the proportionality coefficient by requiring
that

%/tTr(E/\E/\E), (8.13)

where the integral is taken over a tetrahedron %, is equal to the geometrical volume of ¢.
For any triple of wedges wy # wg # ws, the integral (8.12) is equal to a-sign(wy, wq, w3),
where « is a coefficient that is independent on a triple, and sign(wq, w9, ws) is plus or
minus one depending on the orientation of the form duj A dug A dug. Thus, (8.13) is
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equal to
1 .
12 E - 31gn(w1,w2,w3)Tr(Xw1Xw2Xw3). (8.14)

wq 75111275’1113 €t
Here the sum is taken over triples of different wedges in ¢, taking into account all dif-
ferent permutations of wy,ws,w3. Taking into account the fact that the number of
permutations of wy,wy, w3 is 6, we get for (8.13):

1
5 > O Tr (X, Xy Xy ), (8.15)
wq <wg<wsy

where the notation wy < w9 < wg means that the sum is taken over 16 different triples
wy # wg # ws such that sign(wy,wy,w3) = 1.

To relate (8.15) to the volume of tetrahedron ¢, we recall the geometrical interpre-
tation of variables X,,,. They were introduced earlier as the variables that carry informa-
tion about the length of edges of the triangulation. At this stage it is more convenient to
introduce SO(3) indices (A.3). Thus, each X, is characterized by Xfu,i =1,2,3. Recall
that wedges w are in one-to-one correspondence with edges e of the triangulation. Thus,
let us view each X?ZU as the vector representing the corresponding edge (each edge can
be viewed as a vector pointing from one vertex of A to another), and the norm squared
XZ)XZ) of quu as the length squared of this vector. Indeed, it is not hard to check that

the interpretation of X:.UX?Z;) as the length of the corresponding edge is consistent with
the other known facts. Let us consider the operator corresponding to XZ}XZU. According

to our general prescription, this quantity is represented by the operator (4/ (5iJw)2. We
have already dealt with this operator in the previous section, see (8.6). Its eigenvalue is
given just by the half of the Casimir (plus 1/4). Thus, in the sense of eigenvalues, we
can write o )
i i g
Xwa =(j+1/2)%, (8.16)

where j is the spin from (5.29) labelling the dual face that contains w. Thus, (8.16) tells
us that, in the limit of large spins j, the norm of X, grows as j. This is to be compared
with the length spectrum of the canonical quantum theory

(length) = 1/j(j + 1). (8.17)

This also grows as j for large spins. The expression (8.17) can be easily derived in the
context of canonical (loop) quantum gravity in three dimensions (note that we use units
in which 87G = 1). Another motivation for interpreting the spin j as the length of an
edge (for large j) is that it is exactly this interpretation that must be used to reproduce
correctly the Regge calculus version of Einstein-Hilbert action in the Ponzano-Regge
model of quantum gravity [48]. Thus, we learn that the interpretation of the norm of
each vector X, must be that of the length of the corresponding edge of A. Having this
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fixed we can relate (8.15) to the volume of tetrahedron ¢. We have

TR
ﬁ(leXwQXwg)zzeiijfUlXJ X (8.18)

wy” wg’
where we have introduced the SO(3) indices, see (A.3). Each X:;] has the interpretation
of the vector corresponding to one of the edges of t. Thus, (8.18) is equal to 12V, where
V is the volume of ¢. In (8.15) we have 16 such terms. Thus, it is equal to

1
5&-16 - 12V.

The requirement that (8.13) is equal to the volume of ¢ fixes the parameter a to be
1/(16 - 6). Thus, finally, we obtain the interaction term i®(X) to be

A1 i v vk
~ 516 > ik Xy Xy Xy (8.19)
w1 <wgo<ws
where the sum is taken over 16 terms. To obtain the transition amplitude of the theory
we have to replace each XZ) by the operator ¢/ (5iJfﬂ and act by the exponential of (8.19)

on the generating functional. Thus, the first order term in A in the decomposition of the
transition amplitude is given by:

iA 1 PR

_n de;ip—o .

2916 > “Uksigi sigi gigk
wq wy w3

Z3(J, A) . (8.20)

w1 <wo <W
1 2 3 J=0

This is to be compared with (7.19). We will now show that the most complicated term
in that expression — the term that involves trivalent graspings — exactly matches our
result (8.20), including the numerical coefficient and the sign. To see this we just have
to relate the trivalent grasping in (7.19) to the cubic operator in (8.20). As explained in

the Appendix D, a single grasping in (7.19) acts by inserting (o*/v/2), where o' are the

Pauli matrices. The operator (6/6iJ"), when applied only one time, acts by inserting

just ol Also, taking into account the definition of the trivalent grasping in (7.19), one
can show that o

| e 858
ki 57;ng 5iJk,

(8.21)

y——— =

e/// \\\ en

So our approach does account for the most intricate part of the 3D transition amplitude
in the first A-order, reproducing correctly even the numerical coefficients. Note, however,
that we do not get all of the terms appearing in (7.19). The discrepancy we find between
the model we obtain and the usual state sum model can be understood by comparing the
two different expressions for the spacetime volume: the one obtained within our approach
and the one obtained within the Turaev-Viro model, see (7.19). The Turaev-Viro model
tells us that we must associate the spacetime volume not only to tetrahedra of the
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triangulation, but also to edges and vertices. Within our approach, only the tetrahedron
part of the spacetime volume is accounted for. The reason for this was that, when
evaluating the cosmological term of the action on the distributional F field, we took only
the terms which came from intersections of different wedges at the centers of tetrahedra.
As we discussed, even these terms are ill-defined because of the distributional nature of
the F field. However, the corresponding ambiguities can be successfully resolved for these
types of intersections by using geometrical considerations, and, after the ambiguities are
eliminated, the result exactly matches the analogous terms of the usual state sum models,
including the matching of the numerical factors. The geometrical considerations we used
were exactly the ones that relate the terms we considered to the volume of a geometrical
3-simplex. Thus, it is not very surprising that only the “part” of the Turaev-Viro model
that accounts for the volume of 3-simplices was reproduced correctly: as the geometrical
considerations we used above tell us, we considered only the terms that are relevant for
the volume of individual 3-simplices. However, there are other types of terms that we did
not consider and that may be crucial to reproduce the corresponding state sum model
correctly. Let us consider, for example, the terms of the type:

/tTr(Ewl A By AE,,),

for some wy # wy. The result of such an integral is ill-defined. Indeed, there is an
indeterminacy of the type 0 - co, where 0 comes from duj A duy (see (5.28)), and oo

comes from the square of the d-function (52(u1). These terms are proportional to
(X, Xy Xopy)-

Other terms that may arise are

/Tr(Ew NEy AEy),
t

for some w. They arise as the result of the indeterminacy 02. 002, where 02 comes from

du A du N du (see (5.28)), and 00? comes from the cube of the é-function 53(u). These

terms are proportional to
Tr( X, X Xw)-

There is no obvious reason to set these two types of terms to zero. In fact, as one can
see, these are exactly the types of terms that are needed to account for the other terms
appearing in the first A-order in the Turaev-Viro model. Although the structure of terms
appearing this way is clear, at the present state of the development of our approach, no
geometrical arguments is available to fix the ambiguity in the coefficients in front of such
terms. However, the precise agreement of the terms for which such arguments do exist
gives hope that, ones the above ambiguities are resolved, we will have an exact agreement
between the models obtained using our procedure and the usual state sum models.
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8.3 4D BF theory with cosmological term

In the case of 4D BF theory with cosmological term the interaction ¢® is given
by:
B =-L [ wEA (8.22)
i = —— r . .
2 M
Our general prescription is to evaluate this interaction term on the distribution (5.3) and

find a polynomial function ®(X). Thus, one has to evaluate integrals
/M T(E, A B,) (8.23)

with E,, given by (5.30). The integral (8.23) is non-zero only if wedges w,w’ intersect.
However, similarly to the case of 3D, the result when the wedges intersect is ill-defined
because of the distributional nature of E,,. Thus, again some independent considerations
have to be used to fix the ambiguity. We use a strategy similar to the one adopted in the
case of 3D BF theory. We consider only the terms coming from wedges w, w’ intersecting
at the center of a 4-simplex. As we shall see, these are the most important terms in the
sense that they are responsible for the main terms in the first order in A of the Crane-
Yetter model. The relevance of other types of terms will be emphasized below. To fix the
ambiguity in (8.23) when w, w’ are two wedges that intersect at the center of a 4-simplex
h we use geometrical considerations.
Let us consider the integral

—% /h Te(E A E) (8.24)

over the interior of a particular 4-simplex h. It is equal to the sum
1 /
-5 > /hTr(Ew NE,). (8.25)
w,w'€h

Each of the integrals here is proportional to
Tr(X,y X, 1) = —2X, X, (8.26)

with the proportionality coefficient given by:

1

-2/, §(u)8(v)5(u )5 (v )du A dv A du' A dv. (8.27)

The later is equal to —(1/2)a - sign(w,w/), where ¢ is a numerical parameter, whose
value is not fixed due to the ambiguity referred to above, and sign(w,w,) is the sign of
the volume form in (8.27). Thus, (8.24) is equal to

Z a - sign(w, wl)Xi)XfU/, (8.28)

waw' €h
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where the sum is taken over wedges w,w/ inside h that span a 4-volume. There are
exactly 30 terms summed over in (8.28).

We will fix the parameter a relating the quantities va to the geometrical 4-

simplex in R First, let us note that when FE in (8.24) is equal to the self-dual part of
the wedge product of two copies of the frame field:

+

Eop = " 2gb;

IJ I,
X = 0[a9b], (8.29)

where 05 is a frame (tetrad) field, then (8.24) is equal to
ligi 14gi cabed ligrrly ;jéabed _
/h AT / Ser 3 Sed - (8.30)
1] KL abed _ 4!

E Z 31
16 / LIKL =16 (8.31)

where V}, is the volume of h with respect to the metric defined by 05 . Thus, we will fix «

in such a way that (8.28) is equal to (3/2)V}, when X;LU can be related to the quantities
characterizing a geometrical 4-simplex.

Recall that a geometrical 4-simplex in R? is characterized (up to translations) by
four vectors: the four vectors pointing from one of the vertices to the other four ( for
more details see the Appendix B). For each face of h one can also construct the so-called
bivectors, which are given by the wedge products of any two of the edges belonging to
that face. The bivectors live in the second exterior power of IR*. One can take the
self-dual part of a bivector to obtain an element of IR3. As is shown in the Appendix
B (see (B.10)), the norm (obtained using the usual flat metric in ]R3) of the self-dual
part of each bivector is equal to the squared area of the corresponding face. There exists
also a simple expression (B.11) for the volume of a 4-simplex involving only the self-dual
parts of bivectors. Recall now that wedges w € h are in one-to-one correspondence
with faces of h. Then, if Xfﬂ has the interpretation of the self-dual part of the bivector
corresponding to a face of h.

A comparison of (B.11), (8.30) fixes the value of @ to be @ = 1/30 - 4. Thus, the
first A-order term of the transition amplitude is given by:

S0 g (8.32)
diJ" 6iJ",
w

w,w'€h w J=0

1 1. /
A% Z ngn(w,w)



65

To compare this with (7.34) we need the relation between the grasping there and the
operator in (8.32). The corresponding relation is given by

e
|
10 9 (8.33)
L2484 6iJ?,
H w w

e

Using this correspondence we see that (8.32) agrees with the result (7.34). As in the 3D
case, the matching includes the numerical coefficient and the sign of the expressions.

Let us now discuss the role of the terms denoted by dots in (7.34). Let us recall
that those terms are determined by a framing of the (15j)-symbol used in the Crane-
Yetter model. These terms are given by a sum of graspings of edges of the graph I',
that share a vertex. Recall that vertices of I'j, are in one-to-one correspondence with
the tetrahedra of h. Thus, the general structure of these terms is such that they can be
grouped according to a 3-simplex (tetrahedron) to which they “belong”. Therefore, these
terms can be thought of as the contribution to the 4-volume of the BF theory coming
from individual tetrahedra of A. Thus, these terms are in certain sense analogous to the
terms in 3D that carry 3-volume corresponding to the edges of A. As in 3D our approach
did not reproduce correctly the terms corresponding to edges, in 4D we did not reproduce
correctly the contribution to the 4-volume coming from tetrahedra. Similarly to the case
of 3D, these terms may possibly be reproduced if one takes into account the types of
intersections in (8.23) other than the ones considered here.

8.4 4D self-dual gravity

In order to apply our strategy to the self-dual Plebanski model let us consider the
“interaction” term of the action (6.11):

i®(E) = —i /M ij (E’ NET — %5ijEkEk> . (8.34)

Using the same procedure as in the case of the 4-dimensional BF theory with cosmological
constant, this term, when evaluated on distributional E field, gives

=iy 4y (o)) (X) (8.35)
h
where v, denotes the center of the 4-simplex and
O (X)= Y sign(w,w) (XZUXZU - 55” X, X, k) (8.36)
w,w' €h

is a quadratic function in the wedge variables X,,. In order to write (8.35) we have
absorbed some unimportant numerical constants into the Lagrange multipliers 1); j- The
generating functional approach tells us that the spin foam transition amplitude of the
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self dual Plebanski model is given by Z(0) where

5 y . ij, 8

Z(J) = /Hdw (o) e  2n Vi ) 5T) L 7y, (8.37)
h

The integration over Q/JU gives rise to delta functions. Thus, Z(J) can be characterized
as the solution of

.. 5 ~
QU VA — .
9)2(0) =0, (5.35)
for all 4-simplices h, or, equivalently, as the solution of
QI 0y qinin( 2y Z(n) g = 0. (8.39)
h Nisg h Yisg J=0

Using the fact that Z(J) and, therefore, Z(J) are gauge invariant and the property that
an su(2) symmetric traceless tensor 0% is totally characterized up to gauge transforma-
tion by its square Q% Q; j we see that the preceding equation is equivalent to

(81045, (52) - Z() 7o = 0. (8.40)

The solution of the later can be written as

2(0) = lim ]| —= e_%%ﬂijﬂijh(i)-Z(J)‘ (8.41)
L V2enT 10J J=0 )

z—0

In this form the result is very similar to the one given by the Reisenberger model.
There are however several differences. The first one is the fact that the derivative op-
erators appearing in our result are the commutative ones, while Reisenberger uses the
non-commutative right and left invariant vector fields. The second difference is due to
the presence of the factors of P(J) in the generating functional.

8.5 Higher-dimensional gravity

Similarly to the case of the self-dual model considered in the previous section, in
the case of higher-dimensional Palatini gravity the “interaction” term in the action must
be treated not as a perturbation of BF theory, but as giving constraints that are to be
imposed. Thus, we have to take the generating functional and impose all the constraints
discussed in section 6.5. In general it is not clear what it means “to impose constraints
on the generating functional”. Indeed, it either satisfies the corresponding differential
equations or does not. However, in our case, because we understand the geometrical
meaning of the constraints, the situation is different. Because the generating functional
has the form of the sum over representations of the product of simplex amplitudes, one
can simply pick up those terms from this sum, which satisfy the constraints. The result
has a very natural geometrical interpretation in terms of quantization of a geometric
simplex, along the lines of section 7.5. The results of this section are based on Ref. [31].
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First of all, one has to find the “discrete” analogs of the constraints of section 6.5.
The result is as follows. There are several types of constraints that one has to impose.
First, there are the so-called closure constraints. These arise because one is considering
a set of Lie algebra two-forms Ez-j, one for each (D — 2)-simplex, that are obtained by
integrating the E field, which is a (D — 2)-form, over these (D — 2)-simplices, and there
are linear dependences between Ez’j obtained this way. It is straightforward to solve
the differential equations corresponding to these constraints for they simply require the
simplex amplitude to be gauge invariant.

Second, there are simplicity constraints for each (D — 2)-simplex, or for each two-
form E; s which require this two-form to be simple. This constraints can also be solved

in quantum theory. They imply that only a part of the space L2(G) is relevant. This
relevant part can be written as a direct sum over special representations that can be
called simple representations. We shall describe these representations below.

Third, there are analogs of intersection constraints. In the quantum theory these
constraints appear as constraints on intertwiners. We describe solutions to these con-
straints below.

Finally, there is a problem of imposing analogs of normalization constraints. These
turn out to be the most non-trivial ones. At this stage, we can say very little about
these constraints. They, however, may turn out to be very important physically, as we
comment on below.

Let us first describe how the simplicity constraints are solved. Let us denote the
basis of the Lie algebra of SO(D) by Xz'j> i,7 € {1,...,D}. Our general framework
tells us that the two-forms Eij must be promoted to derivative operators acting on the
generating functional. Since Lie algebra is generated by derivatives (vector fields) on the
group, this means that E; j is promoted in the quantum theory to an element X, j of the
Lie algebra of SO(D). Then the quantum analog of the simplicity constraints is given
by:

X[inkl] =0, Vi, j,k,l€{1,...,D}, (8.42)

where [ijkl] means that we consider the total anti-symmetrization on these indices. It
turns out that, among all irreducible representations of SO(D), there is a special subset of
representations satisfying (8.42). These representations are related to harmonic analysis
on the sphere S —1 Some of their properties are reviewed in Appendix F. The result
of [31] shows that the spherical harmonics representations described in the appendix are
the only irreducible simple representations.

Thus, it is not hard to solve the quantum analogs of the simplicity constraints: one
simply has to restrict oneself to simple representations of SO(D). Let us now discuss
the quantum version of the intersection constraints. As we mentioned above, these
become equations on intertwiners. The simple representations can be realized in the
space of homogeneous harmonic polynomials of a fixed degree. Let us first write down
the quantum analog of the intersection constraints. Consider a given spin network. Let

€1,---,€, be the incoming edges and e’l, e e;) be the outgoing edges at the vertex v.
Then 7—[%”,7—[%?2 are simple representations associated with edges meeting at v. An
C/L‘ e'.

J
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intertwiner from the tensor product of incoming simple representations to the product
of outgoing ones is given by a multi-linear map

I(Pla"'aPnaQ]_a"'an)a (843)

where F; (Qj respectively) are harmonic homogeneous polynomials of degree Nei (Ne/
_ J
respectively), and @ denotes the complex conjugate of (). The intertwining property

reads

I(P]_a"'apnana"'an):I(g'Pla"'ag'Pnag'Qla"'ag'Qp)7 (844)

and an example of the intersection constraint is given by:
I(X[jj P, Xy Py, P Q1,0+, Q) = 0 (8.45)

There exists a very simple and beautiful solution of these constraints. This solu-
tion was discovered for the case D = 4 by [12]. However, in that work, it was written in
a rather cumbersome way as a sum over a product of intertwiners of SU(2). Moreover,
the proof that the intertwiner satisfies the intersection constraints used heavily the fact
that the universal covering of SO(4) can be written as the product SU(2) x SU(2). This
uses the duality available in D = 4, which makes this dimension very special. Thus, it
was not at all clear that this solution could be generalized to higher dimensions, where
there is no notion of duality. The solution that was given in [31] shows that the central
notion, allowing the construction to work, is not self-duality, but the fact that simple
representations are realized in the space of polynomials on the sphere sP-1.

Let P; (Q j respectively) be harmonic homogeneous polynomial of degree Nei (Ne’.

J
respectively) and consider the following intertwiner between

n (D) p  4,(D)
J
given by

(Pl P Q2 Q) = [y, d9Ue) PL(e) -+ Py (2)Qu(w) -+~ Qpla). (846

Here dQ) denotes the invariant measure on the unit sphere $P=1  For definiteness we
choose the normalization of this measure such that

/SD—I dQ(z) =1

The fact that I, p is an invariant intertwiner can be easily seen using the invariance
of the measure, integration by parts and the Leibniz rule. This is, in a sense, the simplest
possible intertwiner one can imagine. Note that the above intertwiner in the case D = 3
is the usual intertwiner of SO(3) that is constructed from Clebsch-Gordan coefficients.
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It is remarkable that such a simple entity gives a simple intertwiner, as it was shown in
[31].

Thus, we found the quantum analogs and solved all the constraints but the nor-
malization constraints. Taking the spin networks build of the simple representations, and
using the intertwiners described below, and interpreting these spin networks as giving
amplitudes for a quantum D-simplices of a fixed triangulation, one obtains spin foam
models of D-dimensional quantum gravity. These models generalize the Barrett-Crane
model of 4D gravity described above.

We must make a cautionary remark on the intersection constraints, however.
In the way we treated these constraints, we considered each D-simplex independently
of all other D-simplices of the triangulation. We then concentrated on (D-2)-faces of
each D-simplex and required them to intersect properly by imposing the intersection
constraints. Note, however, that a pair of intersecting (D-2)-faces belongs not just to
a single D-simplex. In fact, it belongs exactly to two D-simplices that share a (D-1)-
simplex containing these (D-2)-faces. The fact that the intersection constraints were
imposed independently for each D-simplex means that, for each pair of intersecting (D—
2)-faces, the intersection constraint was imposed twice in our model, instead of once as
it should be. The same applies not only to our higher-dimensional generalizations, but
also to the Barrett-Crane model. This might mean that, when a D-simplex is viewed
as an element of a triangulations of spacetime, one must look for some other way to
impose the intersection constraints, which would avoid imposing them twice. For more
discussion on this see [25].

We conclude this section by remarking on a possible role played by the normal-
ization constraints. As a preliminary analysis shows, there are no local solutions to
these constraints, in the sense that no modification of a simplex amplitude solves them.
Instead, one must look for solutions in the form of linear combinations of simplex ampli-
tudes for different simplices of the triangulation. This, while at first seems problematic,
may in fact be a blessing, for these non-local solutions may be related to the gravitational
waves. The fact that normalization constraints only appear in four spacetime dimensions
is consistent with the fact that the are no local degrees of freedom in dimensions smaller
than four.
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Chapter 9

Geometry and representation theory: higher dimensions

In the previous chapter we have checked our procedure against known state sum
models and found a good agreement. We then applied it to higher-dimensional gravity
and obtained a spin foam model for the later. This spin foam model is a generalization
of Ponzano-Regge model for 241 gravity. We derived it using a definition of the path
integral for the theory. In this section we show how the resulting model can be understood
as realizing a relation between group representation theory and geometry. As we shall
see, there is a natural generalization of the results we have obtained for 2+1 gravity in
chapter 2 to higher dimensions. In this chapter we will encounter the relation between
simple representations of SO(D) and Euclidean geometry of RP. As we shall see, the
spin foam model derived in the previous chapter realizes this relation in an explicit
fashion.

As we saw in the previous chapter, the quantum amplitude for a simplex is given
by the value of a spin network, whose edges are labelled by simple representations, and
whose intertwiners are the simple intertwiners in the sense described in section 8.5. As
we saw in chapter 2, an analogous construction in 2+1 gives an amplitude that is related
to the classical Regge action. In this chapter we show that the same holds in higher
dimensions. To show this, it turns out to be very convenient to realize spin networks as
Feynman graphs of a special sort. The general construction that realizes spin networks
as Feynman graphs is presented in the following section. Section 9.2 gives details of
this construction for the case of simple SO(D) spin networks. Section 9.3 proves the
asymptotic formula for the simplex amplitude. It is in this section that we shall see the
Regge action arising. Thus, this completes the circle: having started with the formula
for the (6j)-symbol asymptotics, and being led by it to the idea of spin foam models,
we introduced spin foam models of higher-dimensional gravity; we will now see how the
asymptotics formula for the symplex amplitude in higher dimensions yeilds the Regge
action.

9.1 Spin networks as Feynman graphs

Before we present the construction interpreting simple spin networks as Feynman
graphs, we will need the standard notion of a representation of class 1 (see, e.g., [61]).
Spin networks that can be represented as Feynman graphs are the ones constructed using
only these special representations of G.

DEFINITION 1. Let p be an irreducible representation of G, and let H be a subgroup of G.
If the representation space VP contains vectors invariant under H, and if all operators
UP(h),h € H are unitary, then p is called a representation of class 1 with respect to H.
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The significance of these representations comes from the fact that they can be realized
in the space of functions on the homogeneous space H\G. As we describe below, spin
networks that are constructed using only representations of class 1 with respect to H
can be viewed as Feynman graphs on H\G. Simple SO(D) spin networks of section 8.5
are just such spin networks. In this case H = SO(D — 1) and H\G = sP-1,

The realization of a representation of class 1 in the space of functions on a ho-
mogeneous space H\G is a particular case of a general description of an irreducible
representation p by shift operators in the space of functions on the group. Let us remind
the reader this description. Consider matrix elements

Uy (9) = (U (g)x, ),

where x, a are vectors from the representation space V. Let us fix a. Then the functions
U£ a(g), x € VP span a subspace in the space LQ(G) of square integrable functions on
the group. One can then show that the right regular action of the group G on this
subspace gives an irreducible representation equivalent to p. The scalar product in the
representation space is then given by the integral over the group. In the case p is a
representation of class 1 with respect to H, and a is a vector invariant under H, the
functions U£ a(g) are constant on the right cosets Hg and can be regarded as functions
on the homo’geneous space X = H\G. The scalar product is then given by an integral
over X.

We are now ready to describe spin networks constructed from representations of
class 1 with respect to H as Feynman graphs on X. Let us denote by plp )"(:1:), reX
an orthonormal basis in the representation space p realized in the space of functions on
X. The matrix elements of the group operators are then given by:

UP(o)y, = [ e P @) PO ag),

where dz is the invariant normalized measure on X. This gives realization of the matrix
elements as integrals over X. The other building block necessary to construct a spin
network is an intertwiner. Intertwiners can be characterized by their integral kernels.
For a k-valent vertex one defines the integral kernel I;,(z1,...,z};) so that:

Pr(npll)(ml) .. pr(npi)(xi)P(pi+1)"i+1 (@i41) - PP ().

i

The integral kernels I, (21, ..., z}) must satisfy the invariance property

I,(z19,...,29) = I,(zq,...,2}).

A special important set of intertwiners is given by:

Iy(er,oszy) = [ dod@,ay)---o(e,)
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or

I M1 ”k — dmp p1 p(p,)( )PPt UINi+1 () ... ploR)E ().

vml

These special intertwiners are the ones that appear in simple spin networks, as we de-
scribed in section 8.5. Exactly for such intertwiners it is possible to represent the spin
network evaluation as a Feynman graph. Let us now introduce what can be called

Green’s function:
n
=3 PP @) PP ().
n
This Green’s function satisfies the “propagator” property:
[ 426V @26 () = 6P .y)
Let us also introduce a propagator “in the presence of a source”:

G( (z,y;9) / dz (P (z z)G(p)(zg,y).

Tt is clear that G(P) (z,y;e) = leld) (z,y), where e is the identity element of the group.
One can now check that, in the case all spin network intertwiners are of a special type
I,, described above, the spin network function ¢ T.p,J) of the group elements g;,...,9g

is given by the Feynman graph with the following set of Feynman rules:
e With every edge e of the graph I' associate a propagator G (p 6)(30, z'; g0).
e Take a product of all these data and integrate over one copy of X for each vertex.

These rules can be summarized by the following formula:
/
b p,i)915- - 9E) = II /X da, [ G\°e) (z, i 0e)- (9.1)
v €

Thus, in the case intertwiners are given by I the evaluation of a spin network on a string
of group elements is given by a Feynman graph: one associates the Green’s function to
every edge and integrates over the positions of vertices.

Before we illustrate this general construction on the example of simple SO(D)
spin networks, let us note that this construction can be readily generalized to the case
of an arbitrary spin network. Indeed, the restriction of representations labelling the spin
network to be those of class 1 with respect to a fixed subgroup H was necessary only to
guarantee that the resulting Feynman graph lives in the homogeneous space X = H\G.
It can be dropped at the expense of Feynman graphs becoming graphs in the group
manifold. The restriction of intertwiners to be of a special type fv can be dropped with
the result that the set of Feynman rules specified above changes: in this case one has to
associate with every vertex the integral kernel I,(zq, ..., ) and then integrate over all
the arguments. Thus, in the case of arbitrary intertwiners, the evaluation formula takes
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the form:

(T,p,I) (91,---+9E) = 1;[ /X dx, I,,(x,) 1;[ G(pe)(:c, 7 ge)- (9.2)

Here x,, stands for a string of arguments z1,...,z} of a k-valent intertwiner, and :c,x/

in the argument of the Green’s function el 6)(m,x'; ge) must be the same as those in
two intertwiners: z must the appropriate argument in I,,e € S(v) and ' must be the
argument of I(w),e € T(w).

9.2 Simple SO(D) spin networks

In this section we illustrate the general construction presented above on the exam-
ple of simple SO(D) spin networks. Their relevance to quantum gravity in D dimensions
was explained in section 8.5.

Simple SO(D) spin networks are the ones constructed from special representa-
tions of SO(D). As is well-known, group SO(D) has a special class of representations,
called spherical harmonics, that appear in the decomposition of the space of functions
LZ(SD _1) on SP~1 into irreducible components. Some properties of these representa-
tions are described in Appendix F. Using the terminology introduced in Sec. 9.1 these
representations of SO(D) can be described as representations of class 1 with respect to
SO(D — 1). They are characterized by a single parameter that we will denote by N in
what follows; N is required to be an integer. These are the representations that were
called simple in section 8.5. A simple SO(D) spin network was defined in 8.5 as a spin
network which is constructed only from simple representations and whose intertwiners
are the special intertwiners I introduced in Sec. 9.1.

In the case intertwiners are given by I , the value of a simple spin network on a
sequence of group elements can be evaluated using the general formula (9.1). In what
follows we will be concerned only with a special case of spin network evaluated on all
group elements being equal to the identity element. This “evaluation” of a spin network
gives a number that depends only on the graph and on the labelling of its edges by
integers N,. Evaluation of a spin network is of special importance for quantum gravity
because this is the way to obtain an amplitude for a spacetime simplex, see section 8.5.
Thus, according to our Feynman graph formula (9.1), the evaluation of a simple spin
network is given by

#rp) =11 e JICRACES (9.3)

Here
Gn(@y) =3 xg@x" (), (9.4)
K

where we have introduced an orthonormal basis XK, K=(ky, -, kp_9) N>k >
kp_3 > |kp_s| in the representation space (see Appendix F for a construction of such a
basis). The invariance property G n(zg,y9) = G (z,y) implies that G (z,y) depends
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only on the scalar product (z - y), and it is a standard result [61] that

(D) _D+2N -2

P (z,y) = (D-2)/2

D3 Cy (z-y), (9.5)

where ng is the Gegenbauer polynomial, see Appendix G for the definition. The ex-
pression (9.3) for the evaluation of a simple spin network is a generalization of the result
[13] for the evaluation in D = 4.

9.3 Asymptotics of the simplex amplitude

In this section we use the Feynman graph representation of the simple spin net-
works to study the asymptotics of a D-simplex amplitude for large N. The results of
this section generalize those of [14] to the case of arbitrary dimension. Most of the la-
bor necessary to get the asymptotics is done in Appendix H. Here we simple use the
asymptotics (H.1) of the Gegenbauer polynomial obtained there.

As is explained in section 8.5, the amplitude for a D-simplex is given by the
evaluation of the spin network that is dual to the boundary of the simplex. The (D — 2)-
simplices are labelled by simple representations of SO(D), i.e., by integers N. The edges
of the spin network dual to the boundary of the simplex are in one-to-one correspondence
with the (D — 2)-simplices, and inherit the labels of (D — 2)-simplices. As one can easily
check, all vertices of the spin network in question are D-valent. All intertwiners are
of the special type described in Sec. 9.1, and, thus, the formula (9.3) can be used
for the evaluation. Using the asymptotics (H.1) and the formula (9.3) we present an
asymptotic evaluation the amplitude: we will use the stationary phase approximation
for the integral. Our discussion follows closely that of [14].

To get a feeling about the behavior of the amplitude, we will concentrate only on
the oscillatory part of C%(cos ). Thus, dropping all multiplicative constants, which are
unimportant for us, we get

ST~ 2 <H6k1> /D L dz1-drp gy o k<t W (N tP)0p+(1=p)m/2),
7 {ek‘l} k<l ST

where the integral is taken over (D + 1) points — vertices of the spin network — on the
unit (D — 1)-sphere, and k,[ are indices labelling the vertices k,{ = 1,...,D + 1. Thus,
a pair kl labels a spin network edge, and 0y : cos0; = 1 - ;. The quantity € takes
values £1 and the sum is taken over both possibilities for every edge. The rest of the
analysis is exactly the same as in [14]. Taking into account the fact that the variation
of the angles satisfy the following identity (see [14]):

> Vb6 =0,
k<l

where V3, are the volumes of (D — 2)-simplices inside a geometric D-simplex, one finds
that all €z are either positive or negative, and that the stationary phase values of 0y
are the ones corresponding to a geometric D-simplex determined by Nj; + p interpreted
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as volumes of (D — 2)-simplices. Then, in the case the number D(D + 1)/2 of edges in
the simplex is even, we get

P(T,p) ~ COS (kzd(Nkl + )0k + fﬂ%) ; (9.6)

where 6;; are the higher-dimensional analogs of the dihedral angles of the geometric
D-simplex determined by Ni; + p and
k=-——"—(4—D)

is the integer determined by D. In the case D(D + 1)/2 is odd one gets ‘sin’ instead of
‘cos’ in the asymptotics (9.6). Thus, the simplex amplitude has the asymptotics of the
exponential of the Regge action, as expected.
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Chapter 10

Conclusions

Thus, we have finished our journey. Having started with 2+1 gravity, and mo-
tivated by the relation between group representation theory and geometry that was
suggested by Ponzano-Regge model, we have introduced the idea of spin foam models,
and derived models for various theories. For some theories the model we found is just
the model known to be the “correct” one for that theory. For other theories our method
was able to reproduce the known “correct” models to certain degree, as, for example, in
the case of BF theories with the cosmological constant we were able to see how the first
order terms in A arise. For other theories, like higher-dimensional gravity, the models
we found are new. The higher-dimensional models we found are in a precise sense gener-
alizations of Ponzano-Regge model in 2+1 dimensions. Studying the asymptotics of the
simplex amplitude for these models, we encountered the relation between representation
theory and geometry, similar to the one that we had in 2+1 dimensions. On the way, we
even learned something new about 241 gravity, for the Feynman graph representation
of spin networks developed in the previous chapter gives one a new derivation of the
(67)-symbol asymptotics formula.

There are other recent developments on the subject of spin foam models that we
did not discuss in this work. One of such developments is the recent analysis [15, 33]
of the theories of metrics of Lorentizn signature. This is the physically relevant case,
and all the developments presented in this thesis must be taken only as preliminaries
for the Lorentian case. However, as the results [15, 33] show, the Lorentian case can be
sucessfully analyzed using the same methods as the ones defeloped here. The structures
one encounters are even more beautiful and exciting, due to the rich character of the
Lorentizn geometry. The Lorentian case is the subject of an active study now.

These developments are exciting, but they by no means solve all the problems of
quantum gravity. This is only the beginning of the attempt to understand the problem
of quantum gravity as the problem of quantization of geometry. The models we found
show that this idea can be realized. However, there were many problems on the way
that we were not able to solve. Some of these problems are technical, while others are
conceptual. Both will probably require a collective effort of many researchers in the field.

One of the main conceptual problems that was left unsolved, both in the case of
Euclidean and Lorentzian signatures, is the problem of interpretation of the amplitude
for a particular fixed triangulation. Recall that all spin foam models considered give an
amplitude to a fixed triangulation of the spacetime manifold. In the case of 241 gravity,
this amplitude was triangulation independent, so it was natural to interpret it as the
amplitude of the spacetime itself. The higher-dimensional spin foam models for gravity
do not have this property. The amplitude for a fixed triangulation does depend on the
triangulation. There are two possible ways to interpret this amplitude. First, because
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each labelled triangulation has the interpretation of “quantum spacetime geometry”,
one may attempt to sum over all triangulations, which would have the interpretation of
summing over all quantum geometries. This is conceptually appealing, but technically
complicated, for it is very hard, if not impossible, to control such a sum. The other
option is to take a (projective) limit of the triangulation becoming more refined. In case
this limit exists, one can take the limiting value as the definition of the path integral.
This is more in the spirit of the usual definition of the path integral, which is usually
defined as a limit of a repeated integral of a cylinder function. In this procedure, the
original integrand is being approximated by cylinder functions. This interpretation is
very much in the spirit of what was done here, for the main idea of our approach was to
approximate the exponential of the action by a cylinder function that depends only on
a collection of “discrete” variables “living” on a particular triangulation. Which of this
two interpretations is correct (if any) will become clear in the future.

Another problem which was not addressed by our higher-dimensional spin foam
models is that of normalization constraints, introduced and discussed in section 6.5.
Recall that in the models we considered all the constraints except this one were imposed.
This problem may actually be a blessing. Indeed, as a preliminary analysis suggests,
there is no local way to impose this constraints, and the only solutions are global, as the
only solutions to the eigenvalue problem in the interacting one-dimensional Ising chain
are global spin waives. This problem is currently the subject of an active investigation.

Despite all the problems left unsolved, the progress achieved by now by a collective
effort is impressive. One sees how beautiful mathematical constructions of representa-
tion theory start to play role in physics, giving an adequate language for the quantum
description of geometry. This starts to give a concrete realization of old ideas, notably
by Penrose [45], to use group representation theory to describe geometry quantum me-
chanically. Whether this program succeeds or fails remains to be seen. However, one
can only see what is at the end of the path by walking all the way. And I hope that the
point of view developed in this thesis will serve as one further small step ahead along
this path.
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Appendix A
Conventions and notations

We use the following conventions for differential forms and integrals:

1 a
A= HAal...apdwal A...NdzP, (A.1)

/Aal...addzal A...ANdz = /dd:cAal'_‘adéal"'ad, (A.2)

where %1% ig the Levi-Civita density, taking the values plus minus one in any coor-
dinate system. Our convention for the curvature form is: F' = dA + A A A.
The following symbols stand for the following elements of the triangulation

e — for an edge

f — for a face
t — for a tetrahedron
h — for a 4-simplex

We will also use the symbol € to denote edges of the dual complex (dual 1-cells), and o
to denote dual faces (dual 2-cells).

All traces that we use in this paper are in the fundamental representation.

Our SO(3) index conventions:

X =ir'x',  J= %Tiﬂ. (A.3)

L (g2 _ 12
iv2k
The quantity dim(y) is the so-called quantum dimension of j dim,(j) = [2j+1];, where
[n], is the quantum number

(A.4)

2 _
qn/ " n/2

= < A5
[lq A2 172 (A.5)

having the property that [k], = 0.
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Appendix B

Geometric 4-simplex

In this Appendix we list some facts about the geometry of a 4-simplex in R2.
The geometrical considerations used in (8.3) are based on some of these facts.

A 4-simplex in R? is characterized (up to translations) by four vectors. These,
for instance, can be vectors pointing from one of the vertices, which we will denote by
(0), to the other four vertices (1)-(4). See Fig. 10. Let us denote these vectors by eé.

©)

. m .

Fig. B.1. Geometric 4-simplex.

Here I = 1...4 is an index for a vector in ]R4, and a = 1...4 indicates a vertex at which
the vector is directed. Thus, e{ is a vector pointing from vertex (0) to the vertex (1).
Instead of vectors it is sometimes more convenient to use the so-called bivectors.
A bivector EI7 is an element of the second exterior power of R In particular, it can
be obtained by wedging two vectors. Thus, bivectors that characterize a 4-simplex are
gl _ Jl1,J]
ab

obtained as =e,€p - Here the brackets denote the operation of antisymmetrization.

It is not hard to see that bivectors Ecj; i)] are in one-to-one correspondence with faces of
the 4-simplex h. For example, the bivector E’{g corresponds to the face whose vertices

are (0),(1),(2). The norm of each bivector is proportional to the squared area of the
corresponding face

7 2
Ep Bab1y = 245, (B.1)

where A is the area of the face (0),(a),(b) and no summation over a, b is assumed. The
volume of h can be obtained by wedging two bivectors that correspond to faces that do
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not share an edge. For example, with our choice of orientation of M, the volume is given
by
1 IJ KL
Vi, = IefJKLElg E34 . (B.2)
It is sometimes convenient to introduce bivectors corresponding to all 10 faces of h.
So far we have introduced 6 bivectors Eg I;J corresponding to 6 faces of h. Bivectors that
correspond to other 4 faces can be obtained as linear combinations of these 6 bivectors.
When working with all 10 bivectors, it is convenient to label bivectors by 3 different
indices instead of just two. We will employ for this purpose small Greek letters. Thus,
bivectors are denoted by Ech JW’ a, 3,7 =0...4. These bivectors are defined by

pll _ ]

By = CaBay (B.3)

where eé 3 is a vector that points from the vertex a to vertex 8. The norm of all bivectors

(B.3) is equal to the twice of the squared area of the corresponding face, as in (B.1).
As we have said above, only 6 of 10 bivectors (B.3) are independent. Thus, there are
certain relations between them. One can write one such relation for each tetrahedron of
h. One gets 5 relations only 4 of which are independent. With our definition (B.3) these
relations are

Eg12 + Eg23 — Eg13 — E123 = 0, (B.4)
Eg13 + Eg3q — Eg14 — E134 = 0,
Egoyq + Eg34 — Eg23 — Ep34 = 0,
Eg14 + Ey94 — Eg12 — Epg24 = 0,
Eq93 + Ey34 — E194 — B934 =0,

where we have suppressed the indices I, J for brevity. The volume of h can be expressed
as a wedge product of any two of the bivectors (B.3) corresponding to faces that do not
share an edge. This can be written as

sign(/f, Wi, = reraxz B0 B(EL, (8.5)

where we have introduced a notation E(f )I 7 for a bivector that corresponds to face f,
and sign(f, f') is the sign of the right-hand-side in (B.5). The expression (B.5) gives the
volume of h for any two pairs of faces f, f’ that do not share an edge. One can use the
expression (B.2) and the “closure” relations (B.4) to work out the correct sign of any of
such formula for the volume.

Any bivector can naturally be split in its self-dual and anti-self-dual parts:

Eopy = Eopy +  Egpy. (B.6)



81

The self-dual and anti-self-dual parts are given correspondingly by

1 *
+Eaﬁ7 = i(Eaﬁ'y + Eaﬁ'y)a (B.7)

*

1
Eopy = §(Eaﬁ7 = Eapy);

where the Hodge star duality operation is defined as

xnl] _ 1 1] oKL

Eaﬂw = §€KLEaﬁfy' (B.8)
Since the space of self-dual (and anti-self-dual) bivectors in R? is three-dimensional, we
can introduce a new set of indices to label them. Thus, as the index for self-dual (anti-
self-dual) bivector we will use lower case Latin letters from the middle of the alphabet:
i,5,k,... = 1,2,3. The norm of any self-dual (anti-self-dual) bivector calculated by
contracting indices I, J will be the same as the norm calculated by contracting the
single index i:

+E“'Ei _ +EIJ+EU, (B.9)

where we have suppressed the indices «, 3, .. ..

Not any bivector in RY is simple, that is, not any bivector is a wedge product of
two vectors. The necessary and sufficient requirement of simplicity is that the norm of
the self-dual part is equal to the norm of the anti-self-dual part of the bivector. Thus,
using (B.1), we can conclude that when a bivector is simple, its self-dual part norm is
equal to the squared area of the corresponding face.

i+ 42
EO&ﬂV Eopyi = Aaﬂv' (B.10)
There exists an expression for the volume of h that involves only the self-dual parts of
bivectors (B.3):
. N+ i+ !
= o0 O sign(f, ) TE () TE(f), (B.11)

/
’

where TE'(f) is the self-dual part of the bivector (B.3) corresponding to the face f, the
sum is taken over all pairs f, ' of faces that do not share an edge, and sign(f, f/) is the
function introduced above by equation (B.5). The factor of 1/30 in (B.11) appears to
cancel the factor that comes from the sum over 30 terms f, f’.
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Appendix C
Summary of facts on SU(2)

Here we give a short summary of some standard facts about the group SU(2).
One can parameterize an element g of SU(2) by vectors Z from the Lie algebra. The
corresponding relation is given by the exponentiation map:
g= eZ — emﬁn g /2’ (C.].)
where n’ is a unit vector nini =1, 1 is a real positive parameter, and o' are the usual
Pauli matrices:

(O’i . oj) S RCLPLI (C.2)
Thus, qpni is an element of R3 ~ su(2), and (C.1) gives the exponentiation map. As one
can easily check,

g=cos(¢/2) + in‘o’ sin (1/2). (C.3)

Thus, to cover the whole SU(2) just ones, the parameter 1 should takes values in the
range: 1 € [0,4m].
The Haar measure on the group can be related to the usual Lebesgue measure in
R3 by introducing a function P(Z) on the Lie algebra:
sin (¢/2)
P(Z) = (7> . (C.4)
$/2
Then PQ(Z)dZ/327r2 gives the normalized Haar measure on SU(2) in terms of the

Lebesgue measure dZ.
The characters of irreducible representations are given by:

Z, _sin($(j +1/2))
where j are half-integers (spins).
The Fourier transform on SU(2) maps any function on the group into a function

on the space dual to the Lie algebra. Let f be a coordinate on the space su(2)*. Then
the Fourier transform is given by:

a(f) == / dz P(Z) e D) g(exp 7). (C.6)
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The inverse Fourier transform is given by:

Blexp Z) = Zdimjﬁ /J ape 1 Dg(1), .7
J

where the integrals are taken over the co-adjoint orbits — spheres of radius 7 + 1/2, and
the measure df2 §on each orbit is normalized so that

/de = dim; = 2j + 1. (C.8)
J
A particular case of (C.7) is the following simple formula for characters (C.5):
Z 1 if(Z)
xile ):—/dQe . (C.9)
J Pz)J; "

This is the famous Kirillov formula [38].
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Appendix D
Haar measure, intertwiners and spin networks

Let us denote by V; the spin i representation of SU(2) and by V;* the dual rep-
resentation, which in the case of SU(2) is isomorphic to V;. Let us denote by ¢; the
corresponding isomorphism, and by R;(g) the representation of the group element g in
V.

Throughout the paper we use the normalized Haar measure

/dg ~1. (D.1)

Let K be an intertwiner between the trivial representation and a representation
V, that is K € Homg(R,V). We will denote by K its dual K € Homg(V,IR¥).
Intertwiners are the basic building blocks of the so-called spin networks. Another usage
of the intertwiners is to express the result of integration of a product of group elements.
Let us denote by Kél""’ln an orthonormal basis of Hom(;(IR,Wl ®--® Vin) The
intertwiners K(le"”’z" have the property that

KoKpg = 0a,6,

where the product between K and K is defined by the duality bracket V @ V* — IR.
Then the integral of n group elements is given by

/dg Ril(g) R ® Rin(g) = ZK(?,...,mf(,a . (D.2)
(67

11 5--50p

where R;(g) is considered as an element of V; ® Vz* To integrate a product where both

g and g~ appear one has to use the duality relation R;(9) = R; (g_l) = ¢;R; (g)e;.k. For

instance )

This equality can be conveniently expressed graphically if one represents a matrix element
(R;)mn by a line labelled by ¢ with the two open ends corresponding each to one of the
indices m, n. Let us symbolically denote the integration over the group by a circle going
around the lines representing the group elements. Then (D.3) takes the following form:

RSNV,
_dimi Y m

(D.4)




85

To find a graphical representation of the result of the integrals involving more than two
matrix elements we introduce a trivalent vertex — analog of the Clebsch-Gordan symbol
— normalized in a special way. But first, let us define the so-called spin networks.

An SU(2) spin network functional is defined by the following data: (i) an oriented
graph T'; (ii) a map j from the set of edges of I' to the set of irreducible representations
of SU(2); (iii) a map i from the set of vertices V' to the set of intertwiners, which assigns
to each vertex v an intertwiner from the tensor product of representations labelling the
incoming edges to the tensor product of representations labelling the outgoing edges. A
spin network is a function on a number of copies of SU(2), more precisely, on (SU(2))~,
where E is the number of edges in I'. To find the value of this function one takes for
each edge the matrix element of the group element on that edge in the representation
that labels the edge, and contracts the matrix elements corresponding to all edges using
intertwiners at vertices. The function obtained this way is gauge invariant.

In this paper we will use the normalized trivalent vertex, defined in such a way
that the #-symbol constructed from 3 spins is always equal to unity:

(s -

where the operation (-) denotes the evaluation of the corresponding spin network on all
group elements equal to the unity in the group.

With this normalization of the trivalent vertex intertwiner, one can show that the
following relation holds:

j TN/
= dimy, (D.6)
k k

Using this relation one can find the result of the integral of a product of 3 and 4 group
elements. The corresponding formulas are:

"W

il _ (D.7)

| M

i\ K\ |

ififx] |1 M
B = 3 dimy,

1 : A

Also, we use the same trivalent vertex to define the normalized (6j),(15j)-symbols

used in the body of the paper. Both symbols are given by evaluations of the correspond-
ing spin networks, where the intertwiner used in a trivalent vertex is always the one

(D.8)
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normalized as in (D.5). Thus, we get:

(65) = (D.9)

(157) = , (D.10)
0
where the resolution of the 4-valent vertex in (D.10) is given by:
| j
(D.11)
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Appendix E

Quantum 6j symbol

Let X be a one dimensional oriented compact manifold, or more generally an
oriented graph. A chord diagram (usually referred as Chinese character chord diagram)
with support X is the union D = DU X where D is a graph with univalent and trivalent
vertices, together with a cyclic orientation of trivalent vertices and such that univalent
vertices lie in X. Trivalent vertices are referred to as internal vertices, and the degree
of D denoted by d°(D) is half the number of vertices of the graph D. Let A,, be the
Z module freely generated by chord diagrams of degree n. We define the Z module
of Vassiliev diagrams of degree n denoted by A,, as being the quotient of fln by the
relations (STU, IHX, AS) shown in Figure E.1. In the figures we always represent the
support X with bold lines and the graph D with dashed chords.

Fig. E.1.
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Given a Lie group G, and a coloring C of the graph it is possible to define an
evaluation of chord diagrams that is usually called weight system and denoted by waG,C-
Here C, the coloring of the graph X, is a map which assigns a representation of G to
any edge of the graph and an intertwiner to any vertex of the graph X. Given a chord
diagram D with support X and a coloring C of X, we define ‘UG,C(D) as shown in
Figure E.2. Here X, denotes a basis of the Lie algebra of G, fabc denotes the structure
constants associated with each internal vertices and ¢t = tabXa ® Xp is the quadratic

casimir t = tabXa ® X} associated to each chord.

|
(JL)( ,*\): fanc w(é__Q): tab
b N
Fig. E.2.

The space of chord diagrams has been used to define the now famous universal
invariant of framed link Z [39], which assigns to any link L in R3 a formal power series
in#k Z(L) = ¥, 8" Z,(L), with Z,(L) € A,,. We are not going into the details of
this construction. However we must say that this construction uses three main building
blocks: The braiding R € A(I 2), the associator ¢ € A(I 3), which should satisfy the
pentagon and hexagone identity, and the value of the unknot v € A(I), where I denotes
the unit interval (E.1) [27, 21].

hz N N A
12 / I |
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PR R G (E.3)

One important property of the universal invariant is that wg ¢(Z(L)) is equal to the
Reshetikhin-Turaev evaluation of the link L associated with the quantum group Uq(G)
[1, 21, 41], where ¢ = expih and the casimir is normalized such that the norm of long
roots is 2.

It has been shown recently [43, 32], that the universal invariant Z can be extended
to an invariant of oriented, framed trivalent graphs embedded into R3. The evaluation
of the tetrahedral graph with the universal invariant is given by equation (E.4).

(E.4)

If we evaluate the result of Fig. E.4 using the weight system Wey(2),0 We get the normal-
ized 65 symbol expanded in terms of & (Reshetikhin-Turaev evaluation of the tetrahedral
graph for Ueih(su(Z))). The term proportional to A is just the classical 65 symbol. The

next term, proportional to hz, is given by :

Here we have used the fact that, in the case of su(2) and for the normalization of the

casimir given by the trace in the fundamental representation, the identity . = 4 is
satisfied. This term can be written in a symmetric form as:

€

a_ 1.1 1 1 .

el = (- S (- ) -7 0 D (®6)

|

I

! _» LA e
-7 S I

- N |

e,e e
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where the first sum is over all triples of distinct edges of the tetrahedra and the second
sum is over all edges of the tetrahedra.
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Appendix F
Simple representations of SO(D)

What is referred to in this paper as simple representations of SO(D) are the usual
spherical harmonics representations. They are irreducible representations of SO(D) of
class 1 with respect to the subgroup SO(D—1) and, therefore, can be realized in the space
of functions on SP 1. This partially explains their relevance for quantum gravity in D
dimensions, where the (D —1)-sphere has the geometrical meaning of the boundary of the
D-simplex. In this Appendix we review some basic properties of these representations.
For more information see, e.g., [61].

The spherical harmonics representations of SO(D) are the most obvious ones:
they can be realized in the space of homogeneous polynomials of degree N. Let us

denote the space of such polynomials by VJQ,D). Then

) D (N+D-1)!
dlmVjsf ) = m

It turns out, however, that the representation in this space is not irreducible. The
invariant subspace in V]%D) is given, as usual, by the space of polynomials satisfying the

Laplace equation in rD. Thus, the irreducible representations of this type are realized

in the space of homogeneous harmonic polynomials of degree N. Let us denote this space

by /HE\II-)). As one can show,

dim?-[g\]-,)) _ 2N+ 1?1; E)S?AJ; N-3t (F.1)

As we have mentioned, these representations are of the class 1 with respect to
SO(D — 1). Choosing the upper-left corner embedding of SO(D — 1) into SO(D), the
(D)

vector in H ;* that is invariant under the action of SO(D —1) is given (up to normaliza-
tion) by CR (zp) for & = (1,...,7p). Here p = (D —2)/2 and CK;() is the so-called
Gegenbauer polynomial defined in the next Appendix.

(D)

An explicit basis in H N~ can be constructed by choosing a string of embeddings
SO(2) € SO(3) C ---SO(D — 1) C SO(D).

Then HJ(VD) decomposes into subspaces irreducible with respect to the action of the
subgroup SO(D — 1). The later again decompose into the irreducible subspaces with
respect to the action of SO(D — 2) etc. Finally, one arrives at SO(2) whose irreducible
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representations are 1-dimensional. Thus, we have:

(D)

_ N kq kp_3
HN " = O =0 Oky=0

" Okp_y=—kp_3 kD 9"

Here V}, are 1-dimensional representation spaces of SO(2). Note that kp_o in the last

sum runs over both positive and negative values. Thus, a basis in Hg\lr)) can be labelled
by a string of integers:

K = (ky,ko,...,kp_9), N >ky>kg>-->|kp_ol.
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Appendix G
Properties of Gegenbauer polynomials

Gegenbauer polynomials are orthogonal polynomials satisfying many different
properties. In this Appendix we review some of them. For more information of Gegen-
bauer polynomials see, e.g., [61, 36].

Let p be denote a quantity related to the dimension D according to p = (D —2)/2,
or D = 2p + 2. A generating functional for Gegenbauer polynomial is given by:

400
(1—2:cr+r2)_p: Z C%(x)rN. (G.1)
N=0

Gegenbauer polynomials satisfy the Rodriguez formula:

P (1) = NN +2p—1)(N +2p—2) - (2p)
Cn () NNIN+p- DN tp-3) (0t 1) (G.2)

1 1
(1 - PN - AN

)
where the prefactor can also be written as

(~)N T(N +2p)T(p+ 3)
2N NI T(2p)D(N + 3 + p)

The recurrence formula is given by:
(N +1)CR,, 1 (2) = 2(N +p)zCRi(z) + (N +2p — 1)CR_; (z) =0, (G.3)

with C’g () = 1 and Cf (z) = z. The polynomials satisfy the following differential
equation:

{a-a)(G)2 - @+ Doy + NV +29) | R (a) =0,

A change of variable z = cos 8 puts this in the following form:

d 9 cosf d
— 2 — + N(N +2 4 =0. 4
{(dﬁ) P T (N + p)}CN(cose) 0 (G.4)
The polynomials are normalized as:
I'(2p+ N) (D) D-2

= dimH

p _
Cy) = T'(2p)N! N 2N+D -2
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where dim’Hg\?) is given by (F.1). The polynomials satisfy the following orthogonality

condition:
w['(2p+ N)
22P—INY N + p)T2(p)

+1 1
/ d:lt(l — .Tz)p QCJ%CJPQ- = 5N,M

- (G.5)
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Appendix H
Asymptotics of the Gegenbauer polynomial

To get the asymptotics of the Gegenbauer polynomial for large N we use the
differential equation (G.4). It can be put into a form similar to that of a wave equation
by setting

C}\’,’) (cosf) = f(#)sin" P 4.

One gets:

2
d” f 2 plp—1)
—5 + N + ————| =0.
do L P) sin? @
For large N one can neglect the second term in the square brackets and p as compared
to N in the first term. Thus, the large N asymptotics is given by

C’](\I;) (cos ) ~ sin[(N + p)8 + ¢],

sinP 6

where ¢ is a phase and A is a normalization factor, both arbitrary at this stage. It
can be constrained by using symmetry properties of C'p;. From the expression for the
generating functional one sees that

On(-2) = (-)N Oy (@).
Thus,
P (cos(r — 0)) = (1N P (cos ).

A simple analysis shows that this restricts ¢ to be

_(1-p)
¢ = 2 ™+ 7k,

where k is an arbitrary integer. Thus, the ambiguity in k is just the overall sign ambiguity.
The constant A can be determined from the normalization condition (G.5). One gets:
2 m['(2p + N)

22P=INY(N + p)T2(p)’

i
2

or

B 1 [F(Qp—l—N)]l/Z
- T op—Ip(p) LNUN +p)



For large N this behaves as
NP1
2P~1T(p)’

~

Using the fact that

()N +p) (D
N D(p) I'(p)

and the expression for the derivative of the Gegenbauer polynomial

P (0) = NP1

d
p _ : p+1
_dHCN_ 2psm9CN_1,

we can fix the overall sign to be plus. Thus, finally, we get:

-1
(p) NP 1
Cn (cos 0) 2p_1F(p) P 0

sin[(N + p)0 + (1 —p)7/2].
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